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Abstract

Two Airbus accidents at Nagoya, Japan and Toulouse, France in April and June 1994

highlighted the problem of the highly-automated airplane and its interface with pilots. As

technologies in the engineering design progress so quickly in airplane automation, training

philosophies toward the "glass cockpit" may need to be re-evaluated. Many pilots, young

and old, praise the advantages brought by the new technology. On the other hand, many

have complained about the increasing workload and the danger of automation features

which are not in their control.

In this thesis, I evaluate the accidents of the highly-automated airplane and the

probable solutions which can be applied in the training phase to reduce the accident rates.

The training philosophies given to the crewmembers remaining in the cockpit of highly-

automated airplanes should guarantee flying safety with limited time and resources in the

absence of rigorous regulations. Air transportation surely is the most popular business

today and in the future. The machine has been updated to include more automatic controls.

Now our concern is to upgrade the human capability to stay abreast of technology and keep

flying safe. That is the reason for this thesis, whose contribution to aviation safety is to

recommend adequate training philosophies for highly-automated airplane users.

The findings of this thesis suggest that in the highly-automated cockpit era, basic

flying skill training, operating skill-based FMS training, and functional knowledge-based
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FMS training are all important during the training phase due to the unique features of the

highly-automated cockpit.

Pilots need basic flying skills to maintain minimum safety when loss of automation

occurs or when an unusual situation forces them to turn off the automation and fly the

aircraft manually. Pilots also need operating skills to operate the Flight Management

Systems quickly, correctly, and efficiently. Most importantly, pilots need the knowledge of

the functional theories of Flight Management Systems. When pilots thoroughly understand

the design and function theories of automation systems, they will easily be able to recover

from automation failure, and will be more willing to take over in case of malfunctions of

automation systems.
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HIGHLY AUTOMATED AIRPLANE: ITS IMPACT ON AVIATION SAFETY AND

AN ANALYSIS OF TRAINING PHILOSOPHY

I. Background

In April 26, 1994, I was working in the Chung Cheng Institute of Technology as an

aviation safety officer, managing the safety course and teaching. Late at night, television

broadcast the news that a China Airline A300-600R crashed at Nagoya International

Airport, Japan. All but eight of the 271 passengers and crew died. Everyone on our staff

was shocked. We were eager to find out the cause of that accident. While that case was

still under investigation, on June 30 of the same year, another Airbus A330 crashed in

Toulouse, France. This time, the fatality list included an Airbus Industry chief test pilot, a

flight test engineer, an A320 instructor, an operations/training group manager, a market

analysis manager, and two MD-80 captains.

Normally, the cause of an accident comes from one of three categories: man, machine,

or media (the flying environment and management). In these instances, the problem

probably did not result from a lack of flying skill. The CAL A300 pilots were both fully

qualified. The French A330 pilots were not only qualified, but also had expertise with the

Airbus. But why did those experts fail to control the Airbus? In those two cases, all the

pilots were fully qualified. Both Nagoya and Toulouse reported good weather conditions

and no other traffic was in the area when these accidents happened. Both the A-300 and A-



330 systems actually functioned well. All their systems did exactly what that were designed

to do. Then what caused the accidents to happen? Both investigation reports showed that

the airline pilots were shocked at the moment of the accident when the Airbus did what it

was designed to do instead of what the pilots wanted it to do. After the accidents,

experienced A-300 pilots indicated that the CAL crew might have saved the aircraft had

they reverted to basic flight procedures (Mecham, 1994:32). The A-330 investigation team

suggested additional development work to enhance flight envelope protection when

selecting the autopilot's altitude acquisition mode, and it suggested a preparatory briefing

for the crew members should precede the flight (Sparaco, 1994:20).

In these two cases, some integration problems clearly existed between man and the

highly-automated machine. The investigation data showed that at the moment when the

accidents happened, the pilots were not in control. The automatic flight management

systems (FMS) were actually overriding the human command. The cockpit voice recorders

of the CAL and the A330 recorded the struggle between the pilots and the automation

command when these accidents happened (see Appendices B and C for detailed cockpit

conversation between the pilots).

Introduction

Throughout history, people have been interested in flight. But, we do not have the

ability to fly like birds. Flight has always depended on our ability to build machines to

carry us up. The history of flight is really a history of mankind's ability to invent and
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perfect the man in those machines (Bacon,1983). One problem encountered before was

desire vs ability. As has been said before, "The requirement pushes and technology pulls."

However, today the situation has changed dramatically. The airplanes are so advanced that

they are able to override the human capability. To know how to make the systems work for

a pilot has become today's biggest cockpit issue. Workload in the past was measured

mainly in physical terms, for example manually controlling the stick, manually calculating

the navigation variances, and reading the penetration chart to review a landing pattern.

Today, a modem airplane includes those functions which are so versatile that no more

than two crewmembers (Captain, First Officer) are needed to perform tasks which used to

require five crewmembers (captain, first officer, flight engineer, navigator, and radio

officer). The rapid introduction of advanced computer-based technology on the flight deck

has dramatically changed both the aircraft operation concepts and the role of the flight crew.

Modem cockpit technology has shifted the tasks of pilots from physically flying the aircraft

to managing it (Hughes, 1992a:50); thus, the pilots' role appears to have changed from

airplane controllers to system managers. However, to achieve the efficiency of automated

flight, vast amounts of flight plan data must be stored in computer memory. Unfortunately,

the human brain's capability to absorb and digest data and make critical decisions based

upon all the data has not changed. The mental workload that an individual has to

completely master about every system operating in that airplane could be more demanding

than the physical workload on a traditional airplane.
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People agree that automated devices can provide more efficient and precise flight

operations, but automation also requires extra skills to monitor and properly set these

devices. In those areas, people can and do make errors (Wiener, 1987:162-181). The pilots'

knowledge of managing the computer systems and correctly reacting to the abnormal

situations when computers go wrong becomes critical. To manage the on-board computer

systems requires good operating skills. However, to correctly react to abnormal situations,

pilots need to possess not only good operating skills, but also thorough knowledge of the

operating theory of the systems.

Problem Statement

As new technologies are continually introduced into the modem cockpit, aircraft

design has been moving toward more automatic functions for improving performance and

efficiency, lowering pilot workload, and reducing or eliminating human error. Those

automation features sometimes appear as impersonal, generalized, and group-oriented to

pilots (Demosthenes, and Oliver, 1991:22). During the transition training phase, the kind

and amount of training a pilot receives in the automated cockpit environment will

determine how confident that pilot's attitude is toward automation. Accordingly, pilot

performance with automation can vary significantly among individuals and even for the

same individual over time.

A highly-automated airplane can be flown in three ways: fully automated, using the
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flight management computer; on basic autopilot, using altitude and heading hold; or

manually (Hughes,1992:50). The airlines choose the first of these options because the

fully-automated airplane enhances economy, efficiency, and safety. The flying public also

prefers this option because the fully automated airplane has increased speed, altitude

consistency, and flight comfort.

Flight Management Systems onboard the highly-automated airplane today can fly the

aircraft from just after takeoff until touchdown, making precise speed and altitude

adjustments en route (Nordwall,1995:48). This feature has changed the pilot's role to a

systems monitor instead of a hands-on operator (Hughes,1992:50). A proficient pilot's

ability to control and monitor the FMS system determines how safely and efficiently the

pilot will operate the highly-automated airplane. In most major airlines, the FMS-based

automation training has become the principle issue of pilot transition training.

Airlines which use the highly-automated airplane for transportation operations

normally train their pilots in two phases. The first phase is the basic flying skills training

phase. In this phase, student pilots receive their airline pilot rating through many channels

and methods (details addressed in Chapter 2). The basic flying skill training phase is

completed before the company sends its pilots to duty. The second phase, called the

advanced phase, is a transition training phase. In this phase, student pilots train on the

traditional airplane, which has few or no automation features, and the highly-automated

airplane, with high degrees of automation features in the cockpit. As these pilots are

already qualified in basic flying skills, the training focus in this transition phase is on how
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to use those on-board automation systems to effectively fly the airplane. In this phase many

questions about the effectiveness of current training theory in the highly-automated era have

been asked and attention must be paid to them. Which training philosophy is best to deal

with the automation features in cockpits has become an important issue because its results

relate deeply to flying safety.

The advanced training phase (transition from the traditional airplane to the highly

automated airplane) mainly deals with the sophisticated automation system called the Flight

Management System (for a detailed explanation of the FMS systems, see the next chapter).

The Flight Management Systems (FMS), like all other systems, has two parts to be learned:

the theory of how it functions, and its operation.

However, because the training of the FMS system is mainly conducted during the

transition phase, pilots, with time pressures and limited resources (instructors, facilities,

machines), have argued about which one is more important, the skill (how to use it) or the

knowledge (to know why the system works a certain way). Some pilots pay attention to

learning how to operate the keyboard, while others pay attention to understanding how the

systems work.

Research Ouestion

New technologies have led the aerospace industry into the automation era. Those new

technologies provide pilots with many options in flight. As expected, the highly-automated

airplane with its unique features can benefit flying safety and the economy; however, many

new types of accidents also emerged due to unique automation problems which acted in



opposition to the creators' original safety concerns. In reviewing accidents/incidents related

to the automation system problems, it is apparent that some pilots solved their on-board

problems before a crash occurred, while some pilots failed to deal with them, resulting in

tragic fatal accidents. Pilots' capabilities and attitudes toward the automation systems

varied depending on the degree of automation training the pilot had received. However,

with limited training resources and considering the unique automation features of the

highly-automated airplane, which training is more important? Is flying skills training,

Flight Management Systems-based operating skills training, or Flight Management

Systems-based function knowledge training more important? Is there an appropriate

balance between skill-based and knowledge-based training philosophies?

Investigative Questions

To answer the research question, these investigative questions will be answered in turn.

1. What is the new automation's impact on aviation safety? Is cockpit automation

increasing aviation safety or bringing more problems to aviation? As many accidents have

happened in the decades since these automation features began to be employed, what

problems can we determine to be associated with automation?

2. Before the introduction of automation into the airplane, the pilot had to fly the aircraft

manually. Without the automation feature's aid, flying skill was the only pilot-related

concern to the aviation safety. However, since the introduction of the automation features

into the cockpit, many flying skills have been replaced by the Flight Management Systems.

New training approaches are now needed to cope with the automation features. What is the
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traditional training approach? What are the differences between the traditional and the new

training approach?

3. To deal with the automation features, some people think operating skill is more

important because it is basic to be able to smoothly command the airplane. However, other

people conceive that understanding the function of automation features is more important.

With limited resources and vague regulations, we need to find out what is the best balance

between those two training approaches to improve flying safety. What is the best balance

of skill-based and knowledge-based training to deal with new technology?

Methodology

This thesis, which attempts to determine an appropriate balance among the training

philosophies of basic flying skill-based training, operation skill-based FMS training, and

functional knowledge-based FMS training in the highly-automated cockpit, employs the

method of comparative case analysis. According to Cooper and Emory, case analysis is

able to examine a variety of contextual events which bear upon the primary investigative

area (1995, 116). Cooper and Emory state that the case analysis approach provides an

emphasis on detail that gives "valuable insight for problem solving, evaluation, and

strategy" (1995,117). In this study, case study examination of a variety of highly-automated

airplane accidents provides the details necessary to analyze the new type of accidents

resulting from highly-automated airplane. Details linked to pilot performance in these

accidents point to a need to explore issues and aspects associated with aircrew training



philosophies, in particular between skill-based and knowledge-based training. The case

analysis approach used in this study links these accidents with information provided in a

recent Embry-Riddle study.

A study conducted by Embry-Riddle Aeronautical University in 1993 analyzed

comments from 4,100 pilots who regularly flew corporate missions. That survey identified

pilots' attitude towards and comments about cockpit automation. From those problems

commented on by active pilots in the Embry-Riddle Aeronatical University study and

problems of automation defined by the Air Transport Associated of America in 1989, two

case analysis matrices were designed to compare the responses. Finally, examination of

two actual accidents of Airbus aircraft which took place in 1994 were used to evaluate the

information derived from those two evaluation matrices.

Conclusion

Recent accidents caused by cockpit automation features have brought about new

concerns. Technology has successfully improved the flying character of the airplane.

However, to cope with those new technologies, training philosophies need to be re-

examined.

Chapter Two examines the difference between old generation airplanes and new

generation airplanes. The motivation for automation and the advantages/disadvantages of

automation are explained to introduce the problem areas of automation features in modern

cockpit. It is important to identify those problems to provide proper approaches to solving
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them.

Chapter Three explores the different philosophies of training. The focus is on Flight

Management Systems training, the new training philosophy dealing with automation

features. The chapter also compares legal requirements and the problem of inefficiencies of

those requirements associated with the automated airplane's training needs.

Chapter Four identifies the distinctions between Operating Skill-Based FMS training

and Function Knowledge-Based FMS training to find out which one is more important

according to flying safety principles.

Chapter Five identifies the missing part of the current training philosophy. Finally,

some suggestions will be provided to improve aviation safety in the highly-automated

airplane era.
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II. The New Generation Airplane and Its New Generation Accident Style

Earl Wiener identified several reasons for automation such as 1) availability of

technology, 2) safety, 3) economy, reliability, and maintainability, 4) workload reduction,

and 5) more precise flight maneuvers and navigation which promoted the application of

automation into the cockpit (Wiener, 1988:444). However, in the aerospace industry, every

time a problem is solved by technology, a new one may be created (Wiener, 1988:439).

The Highly-Automated Airplane

The highly-automated airplane is an airplane with advanced high technology

automation systems onboard the aircraft that enable the aircraft to utilize automatic

controlling features. Typically there is a Flight Management System (FMS) which includes

Flight Management Computers, electric displays, advanced capability autopilot/flight

director systems and centralized crew alerting systems (Ekstrand, 1990:7) and an Electronic

Flight Instrument System (EFIS). These features are possibly supplemented by additional

automated features such as fly-by-wire, autothrottles, engine indicating and crew alerting

systems, and a collision avoidance system (Norman and Orlady,1988). Also, the cathode

ray tube is widely used in the cockpit, engendering the term "glass cockpit." In the highly-

automated airplane, computer has taken over much of the pilot's work. The process of

flying the airplane has become the computer flies the plane and pilot flies the computer.
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In this thesis, the highly-automated airplane is defined as "those airplanes controlled

by computer programmed systems such as EFIS and FMS." The examples are MD-80s,

737-300/400s, 757s, 767s, BAE 146s, A-300s, B-747s.

The Old Generation Airplane

The old generation airplane is the traditional airplane, defined as "those airplanes

which are controlled by cable and with very few or no computer assistance in flight control,

navigation, or information display." On early aircraft the commands of the pilot were

transmitted to the control surfaces mechanically via cables. On heavier aircraft these

signals were transmitted electrically and caused hydraulic actuators to move (Faith: 1996).

Examples of these aircraft include Comet IVs, 707s, and DC-8s in the late 1950s and 727s,

737-100/200s, and DC-9s in 1960s.

The Purpose and Background of Automation

Historically, aircraft design has moved toward more automation with the goals of

improving performance and efficiency, lowering the pilot's workload, and reducing or

eliminating human errors (Demosthenes, and Oliver, 1991:22). Before we have an in-depth

evaluation of the advantages and disadvantages of automation, it is important to understand

why the aerospace industries would seek automation.
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The Motivation for Automation

During the 1970s and 1980s, to meet the need of reducing the pilot workload and the

demanding task of all-weather operations, the concept of automating the aircraft as much as

possible was then considered appropriate. Researchers at Embry-Riddle University

indicated that the reasons for automation are: 1) to provide the aviation industry with the

opportunity for a safer and more efficient means of transportation; 2) to achieve higher

productivity by reducing both the human workload and the workload through automation of

routine tasks; and 3) more economical functions (Wise, 1993a:8). Earl Wiener defined the

reasons above as 1) availability of technology, 2) safety, 3) economy, reliability, and

maintenance, 4) workload reduction, 5) more precise flight maneuvers and navigation

(Wiener, 1988:444).

The earliest automation dates back to 1924 in France. The automatic system enabled

the airplane to maintain a horizontal flight path and fly to a preset destination. It used the

gyroscope to keep the aircraft on an even keel (Pyle,et.al. ,1992:213). On 10 June 1965, the

world's first commercial service automatic landing was utilized by BEA pilots at Heathrow

airport, London (Pyle, et.al., 1992:635).

Today, technologies have been greatly improved and new types of sophisticated and

complex commercial aircraft to help pilots have been generated, including the Cathode Ray

Tube (CRT), Automatic Throttles, Fully Automatic Landing Systems, Fly-By-Wire system,

and the Flight Management Systems. In flight, those systems will accept air data and

navigation inputs to correct and refine the required program and provide a series of inputs
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to the automatic flight system which precisely guides the airplane (Beaver, 1989: 128).

These features all improved the efficiency of flight. Current trends in cockpit technology

are toward more automation, driven by the ability to use two-pilot cockpits to save airlines

the cost of the third crewmember. More information is available for pilots, and the new

technology provides quick, automatic reaction, within safe aircraft limits, and increased

equipment reliability and maintainability (Andelin and others, 1988:165).

The Flight Management System (FMS)

The Flight Management System consists of many units. Different aircraft have

different features. However, the FMS systems generally include the combination of

Automatic Flight Control System (AFCS), Center of Gravity Control Computer (CGCC),

Flight Augmentation Computer (FAC), Autopilot/Flight Director System, and Autothrottle

System. Chet Ekstrand, Flight Crew Operations of the Boeing Commercial Airplane

Group, stated:

The last decade has seen the introduction of many high-technology airplanes into the air
transportation system. These high-tech airplanes have typically brought us flight decks
with a highly integrated Flight Management System (FMS) which, among other
elements, includes Flight Management Computers (FMC's), electronic displays,
advanced capability autopilot/flight director systems and centralized crew alerting
systems. (Ekstrand,1990:7)

The Character of a Highly-Automated Airplane

According to those function features described above, today the computers can take
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over all aspects of flight management. C.K. Manning, a retired Royal Navy lieutenant

commander, described the highly automated character as follows: "Take off is still a manual

maneuver, but the autopilot goes in soon after, and crews need only touch buttons for the

next 10 hours to complete a perfect flight and automatic landing" (Manning, 1984).

Since highly-automated airplanes largely use computers to control a flight mission,

many duties are done by the machine instead of humans, such as warning systems, control

systems, navigation systems, artificial intelligence, and so on. These technologies attempt

to use computers to solve problems in a manner that simulates the human reasoning

process, in other words, to think for the pilots. They help the pilot to make decisions by

using a human's logical approach to thinking based on expert experience design. Highly-

automated systems reduce the flying workload of the pilots and channel information to

them. For example, the automation in the A-300 has the functions of altitude and heading

hold, high/low speed protection, auto-throttle. Those systems remove much of the

workload from the pilot, allowing him to concentrate on other duties. These systems

channel information to the pilot, like the "glass" cockpit, which presents data to the pilot

using cathode ray tubes, or TV screens, instead of traditional instruments.

The Highly-Automated Airplane: The A320

Among all different degrees of automation, the Airbus series is no doubt one of the

highest. The A320 was introduced by the Franco-German-British-Spanish Airbus

consortium in 1988. Its electronic centralized aircraft monitor (ECAM) on board is an
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example of pilot/vehicle integration. The ECAM uses one of the central cathode ray tubes,

and through automatic or manual selection, presents pictorial drawings of all important

aircraft systems of the A320. The electrical drawings will show the status of the aircraft

busses, voltages, currents, plus any problems that are occurring. Using the ECAM, the

flight crew can quickly and accurately determine exactly what the status of a particular

aircraft system is. After engine start, the ECAM presents the checklists automatically as

they are required.

When loaded the standard instrument departure (SID) into the flight management

computer system (FMCS), the massive on-board computational power will ensure precise

flightpath holding, the responsibility of the electronic systems. The computers are

programmed with all of the relevant aerodynamic data such as speeds and attitudes to

control whatever the pilot may try to do. The computers always try to prevent inadvertent

overspeeding, stalling or overstressing the airframe.

Its basic digital aircraft flight control system is comprised of a single flight control

computer (FCC) for flight director and autopilot functions, a thrust control computer (TCC)

for speed and thrust control, and two flight augmentation computers (FACs) to provide yaw

damping, electric pitch trim, and flight envelope monitoring and protection. With all of

those automation features on board, the A320 is a paradigm of the highly-automated

airplane (Steenblik: 1987,20).
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The New Generation Accident Style

The new generation accident style differs from the old one in that those accidents are

caused by the automated flying systems. Their characteristics can be described as silent,

surprising, and unpredictable (Wise, et.al.: 1993). Following are two typical examples:

In 1979, a DC-10 crashed into Mount Erebus in Antarctica killing 257 persons. The

route change was selected by the airline dispatcher for this sight-seeing flight and the

coordinates of the waypoints were incorrectly computed. When the flight crew input this

data into the aircraft INS (inertial navigation system), the error of the waypoints was

equivalent to 26 nautical miles off course. This resulted in a programmed flight directly

into mount Erebus, not safely down McMurdo Sound as was intended. This route change,

combined with the fact that the crew totally accepted the new flight plan without careful

review because of their blind reliance on the automated systems, contributed to the

aircraft's crashing into the mountain side (Wiener,1987:162-181).

Another case involved the downing of Korean Airlines Flight 007 in 1983, a B-747

with 269 passengers on board. The crew violated Soviet airspace for unknown reasons and

was shot down by Soviet fighters. Several explanations have been presented to explain why

the airliner was so far off course (Pyle, et. al., 1992:794). Wiener has suggested that it may

have simply been a matter of digit inversion in the navigation flight computer system that

resulted in a 300 mile course deviation (Wiener, 1987b: 162-18 1).

In these two cases, pilots did not know they had made the mistake until the accidents

happened, illustrating the characteristics of silence, surprise, and unpredictability. Aviation
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Week & Space Technology has listed 10 accidents caused by high-automation problems

(see Appendix D). Research conducted by the FAA's human factors team in 1996 listed 24

automation-related accidents/incidents (see Appendix E).

In those accident records, pilots were dependent on the automation to control the

airplanes. As Captain Heino Caesar of Lufthansa said, "For the first time in aviation

history, pilots no longer had undisputed and direct access to the flight controls of the

aircraft but were dependent on what the construction engineers programmed into the

software" (Faith: 1996). However, when computers went wrong, or when pilots input

erroneous data, or when pilots did not understand the automation functions, these problems

could result in an accident. Pilots were surprised at the time the accidents happened

because the events were not expected, were silent, and were unpredictable. Those accident

causes were not what the pilots planned or intended to do, but their mistaken input error or

misunderstanding of the automation function led to the accidents. Other accidents were

caused by the erroneous keyboard entry of data into flight management computer systems

and other keyboard-based devices on the flightdeck, such as the Air New Zealand and KAL

cases (Lofaro:1991:880).

The Accident Style of Old Generation Airplane

The first powered aircraft was successfully flown by Orville Wright at Kitty Hawk,

North Carolina, on December 17, 1903, and the first old generation airplane accident

happened at Fort Myer, Virginia on September 17, 1908. The first victims were Orville
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Wright and Lt. Thomas Selfridge of US Army. The cause of this accident was suspected as

an overstress of the airplane's control limits (Pyle,et.al.: 1992). Up to the 1980s, when

automation command was introduced into the cockpit, most of the accident features were

skill insufficiency-based, like the stall, spin, midair collision, and overshooting the runway.

In the old generation airplane, because the pilots were actually in command, when an

accident happened, pilots knew it was going to happen, or at least knew what happened to

cause the problem.

Today, many of the old generation airplanes are still in service in many areas, and the

old generation style accidents still happen frequently. However, before this problem was

solved, a new concern emerged. This new concern is the highly-automated aircraft and its

impact on flying safety.

Comparing those two different accident styles, along with the previously discussed

research findings that modem cockpit technology has shifted the tasks of pilots from

physically flying the aircraft to managing it, we can conclude that for different generation

airplanes with different operating theories, different training philosophies should be

addressed.

The Advantages and Disadvantages of the Highly-Automated Airplane

The use of automation and technology in flight improves efficiency and precision. It

has improved performance and efficiency, lowered pilot workload, and reduced human

error. However, the aviation system has become much more impersonal, generalized, and

group-oriented (Demosthenes and Oliver,1991:23). Many pilots are quoted as saying that
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while they enjoyed flying highly-automated airplanes, they had strong doubts about safety

and workload reduction (see Appendix F). Their reservations about safety were based on a

fear that pilots tended to lose situational awareness in the automated cockpit and that

merely monitoring the new instrumentation would lead to complacency (Glines, 1990:2 1).

With decreased manual control and increased monitoring, pilots would become quite bored

during cruise flight. This can lead to two insidious and dangerous results: taking more time

to detect failures, and becoming less accurate in diagnosing these failures (Patrick,1996:19).

During departures and arrivals, the disadvantage is that the workload becomes excessive

with the slightest change to the flight plan. Pilots occasionally fail to respond appropriately

to an emergency. Easily-made mistakes, like forgetting to enter north or south latitude into

the GPS, or setting the wrong three-letter identifier into the LORAN, can result in a

significant off-track deviation (Patrick, 1996:18), another disadvantage that is difficult for

pilots to detect during flight.

Embry-Riddle Aeronautical University has conducted research of automation and its

influence on human factor issues (Wise, et.al.,1993). In that research, it listed the

advantages and disadvantages originally published by Wiener and Curry in 1980 (as in

Table 1). It briefly introduced the category of the highly-automated airplane and its pros

and cons to the aircrew (Wiener and Curry, 1980).

That table shows that the new-generation airplane has benefited the pilot and has

caused new problems. New training is needed to reduce the disadvantages of the new-

generation airplane. Before we discuss the new training needs, we have first to analyze how
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automation assists or hinders pilot performance.

Table 1. Advantages and Disadvantages of the Highly-Automated Airplane (Wiener and
Curry,1980)

Advantages Disadvantages
Increased capacity and productivity Seen as dehumanizing; lower job

satisfaction; consumer resistance
Reduction of manual workload and fatigue Low alertness of human operators
Relief from routine operations Systems are fault intolerant - may lead to

large errors
Relief from small errors Silent failures
More precise handling of routine Lower proficiency of operators in case of
operations need for manual takeover
Economical utilization of machines (e.g., Over-reliance; complacency; willingness
energy management) to uncritically accept results
Damping of individual difference False alarms
(narrower tolerances)

Automation-induced failures
Increase in mental workload

Advantages of Automation

There are several areas in which automatic control helps pilots:

1. The Multi Function Display (MFD). During radar vectoring for approaches, pilots

can see (pictorially) their position and this helps pilots to know their accurate location at all

times. This enhances the orientation, reduces workloads, and provides safer operation. In

heavy traffic areas like New York, automatic depiction of holding patterns helps pilots to

control the airplane when a sudden route change is given by Air Traffic Control. The

checklist on the MFD helps prevent pilots from skipping any items when contacting ATC

and helps them to be able to look for traffic in the terminal areas and maintain situational

awareness. These features show the advantages of increased capacity and reduction of
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workloads during flight by automation.

2. Autocommands. The autothrottles bring many benefits to pilots. In heavy weather

and strong cross wind situations, the autothrottle's go around and automatic selection of

altitude saves pilots workload so pilots can spend more time on monitoring the instrument

panel. These features also show the advantages of increased pilot capacity, reduced

workload, and relief from routine operations by the assistance of automation.

3. Decreases Workload Enroute. When the system is programmed properly and

accurately in the first place, workload is decreased markedly during flight. But the premier

aspects here are 1) flight factors are known, 2) ATC allows the whole flight plan as

requested, and 3) everything goes as planned. Pilots then do not have to worry about

workloads on power setting, calculating estimated time of arrival, calculating descent

gradient, and maintaining a fixed altitude. The computations are more accurate than the old

ball park figures. However, many pilots experienced a difficult time as they began to learn

to use the automation. Initially the workload seemed to double, but once pilots were

experienced and learned the systems more thoroughly, the workload was greatly reduced.

The benefits of decreased workload enroute are beyond a doubt the most important

purpose for the adaptation of automation in airplane industries. Automation provides the

advantages of reducing manual workload and fatigue, relief from routine operations,

increased economical use of the airplane, and the diminishing of the individual differences,

as shown in Table 1.
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4. Increased Situational Awareness. Automation has increased pilots' ability to know

the status of the aircraft in real time. It makes it easier for pilots to determine whether the

system is operating normally. The automation makes the reaction time to inflight changes

quicker and more accurate because of the awareness of the equipment status. Even though

the automation has made programming on the ground more time-consuming, in the air it

gives the pilots more freedom for cross check and time for other aircraft functions.

As Table 1 indicates, these features increase pilots' capacity to do more jobs during

flight and prevent pilots from making small errors. The automation features also provide

pilots with the ability to precisely handle operations to make the flight safer.

The Disadvantages of Automation

1. The head down time increases. During initial automated operations the systems are

new to a crew. Individuals have to spend excessive time in head-down situations. When

system malfunctions take place soon after takeoff, too much "head down" time in the

cockpit can occur. One captain indicated that many pilots spend too much time in the

cockpit pushing buttons when they should be watching for traffic. Especially during

approach, the crew tendency to update the FMS according to ATC directives causes two

heads to be looking down and therefore no one is looking out of the cockpit for other

traffic. This is obviously adverse to flying safety.

As shown in Table 1, one of the disadvantages of automation is increased mental

workload. Even though the new technologies greatly reduce the physical workload, they

also require an extra amount of time to command the automation keyboard. Barring
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perfect efficiency, additional mental calculation can be created by automation.

2. Increased workload during preflight and programming. Unlike in the old airplane,

the FMS system requires great amount of time to input preflight programming data.

Workloads increase, especially in short drop and go missions, and when ATC changes

flight routing. It requires reworking on tests and setting up departure information again.

This greatly increases the pilot's workload. In the takeoff/departure and approach/landing

phase, it demands heads-down time. Those phases already fall in the highest workload area

which is dangerous to flying safety.

3. Data input errors. If we input incorrect data into the system, the system will take us

to the wrong place (such as the DC-10 which crashed into Mount Erebus in Antarctica in

1979 and Korean Airlines Flight 007). If we merely rely on the FMS for navigation and do

not check the entry properly, those accidents are likely to happen again.

As can be seen in Table 1, the most dangerous disadvantages are silent failure, false

alarms, automation-induced failures, and the over-reliance on automation. Those cases

mentioned above show that if pilots make a minor mistake by putting wrong data into the

FMS systems, the outcome can be fatal and could occur with no warning before-hand.

4. Altitude problems. When altitude select is inadvertently deselected by moving the

autopilot pitch trim knob, no aural warning or visual warning alerts the pilot. Even the

smallest touch on the altimeter trim knob will disengage altitude hold. Altitude awareness

is an absolute necessity. Furthermore, the pre-selected altitude is projected on the EFIS and

the select knob has no detect feel. It was possible to set an altitude, say 17,000, glance
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away, and then look back to see 18,000.

Table 1 lists one of the disadvantages of automation as the fault intolerance which may

lead to large errors. This disadvantage is accompanied with another disadvantage, over-

reliance. When those two disadvantages are put together, problems like the wrong altitude

setting and other unforeseen accidents could happen.

Summar

In the 20th century, man first conquered the aerodynamic problem and successfully

flew in the air in 1903. After 90 years of continued efforts of science and industry, the

highly-automated airplane today is far safer than the original Wright brothers aircraft.

However, new technology now challenges our human ability to understand and control it.

Many accidents show that the difficulty of commanding the computer and computer

mistakes can cause fatal accidents. The quality requirement for a pilot has never been

higher. Besides the basic flying skill, another essential area is necessary for pilots to learn.

This is the knowledge of understanding the automation functions and the skill to operate

them. To fulfill those requirements, an effective training philosophy needs to be explored.

HI. Training Philosophies

Previous research has indicated that although the automation alleviates pilot workload,

it requires an inordinate amount of training to learn and operate at peak effectiveness
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(Parrish,1991:66-70). It also indicates that training pilots in high technology cockpits has

several new areas of consideration. Aside from basic airmanship and knowledge, certain

pilot tasks have become increasingly important in highly-automated airplanes. It is not

enough for pilots to be able to monitor their systems; they must also be able to understand

the logic and the parameters within which the automation operates the aircraft (Wise, et.

al., 1993:16). This chapter evaluates the current pilot training philosophies and the methods

airlines use to qualify their pilots. That is important because airlines must apply a correct

philosophy to train their pilots safely.

Basic Flying Skill Training

Airliners normally train their pilots in two phases. The first phase is called basic

flying skill training phase. Student pilots receive their airline pilot rating through many

channels and methods. This is done before the company sends its pilots to duty.

The definition of basic training is: that training conducted under the FAR part 61 (see

appendix G) to meet the basic requirements of airliner pilots' knowledge and flying skill to

guarantee flying safety. It can be viewed as the training that the major airlines have today

for their pilots before they transition into highly-automated airplanes.

The Importance of Basic Flying Skill Training

Basic Flying Skill Training is important because it is the foundation of the pilots'

training. It is the basic requirement a pilot should have to fly the airplane safely.

In a traditional airplane, pilots have to conduct their flight duty manually. It is
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essential for a pilot to meet the Eligibility (FAR part 61.151), Aeronautical Knowledge

(FAR part 61.153), Aeronautical Experience (FAR part 61.155) and Aeronautical (FAR

part 61.157) requirements. When pilots meet those requirements, theoretically they should

be able to demonstrate professional flying skill associated with their aeronautical

knowledge to fly the traditional airplane or the highly-automated airplane, when in the

manual mode, safely.

The basic training is important not only because it is essential in a traditional airplane

but also because it is the first line of protection the airplane has from accident in the highly-

automated airplane when the automation feature fails. No matter how much modem

technology is present in the automation functions in all areas of the airplane control, when

the system fails, only the skill of the pilot can prevent an accident from happening.

Charles E. Billings, formerly chief of aerospace human factors research division at the

NASA Ames Research Center, said: "It is essential to keep a human pilot in command

because of the large amount of uncontrollable variability in the air transport system"

(quoted in Henderson, 1992:70). In fact, even though most airliners often discourage their

pilots from flying manually because so much money has been spent on the automation,

some operators like Delta and Federal Express are encouraging their pilots to use their own

judgment to decide whether to fly the airplane manually or automatically (Hughes,

1992a:50). Most of the accident causes listed in Chapter II and Appendices could have

been avoided if the pilots had been flying manually. Furthermore, researchers also indicate

the concern of pilots who complain their basic flying skill has decreased since the
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adaptation of the automation systems on airplane (Wise, et. al.,1993:212). It is obvious that

in the highly-automated airplane the learning workload is doubled; the pilot not only has to

learn the good basic flying skill, to efficiently control cockpit automation, the pilots need

more training than those who fly non highly-automated airplanes; that is the FMS-based

knowledge training.

The Government Training Requirement for Airline Pilots

Federal Aviation Regulations Part 61, Subpart F-Airline Transport Pilots section, lists

the basic pilot recruit requirements. These regulations provide a baseline for all airlines to

follow to recruit and train their pilots. These policies are essential to all airlines world-wide

to have their airplanes airborne and transporting passengers. So, it is important to evaluate

the FAR training policies to compare the present situations in a highly automated era.

Ground Training. (135.345) Pilots: Initial, transition, and upgrade ground training.

This training must include at least:

1. The certificate holder's flight locating procedures.
2. Principles and methods for determining weight and balance, and runway limitations
for takeoff and landing.
3. Enough meteorology to ensure a practical knowledge of weather phenomena, including
the principles of frontal systems, icing, fog, thunderstorms, windshear and if appropriate,
high altitude weather situations.
4. Air traffic control systems, procedures, and phraseology.
5. Navigation and the use of navigational aids, including instrument approach
procedures.
6. Normal and emergency communication procedures.
7. Visual cues before and during descent below DH or MDA.
8. Other instructions necessary to ensure the pilot's competence.
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Pilots who complete this part of training gain a thorough knowledge about the flying

environment, rules, and procedures. This part of training is important for flying the

traditional airplane and the highly-automated airplane when flying it manually. However,

the airlines which use the highly-automated airplane could not find a clear direction of how

to train their new pilots to understand the automation features and limitations on the

ground. Pilot, ATC, and automation interface problems are then embedded in this part of

training.

The Flight Training. (135.347) Pilots: Initial, transition, upgrade, and differences flight
training.

(a) The training for pilots must include flight and practice in each of the maneuvers
and procedures in the approved training program curriculum.

(b) The maneuvers and procedures required by paragraph (a) of this section must be
performed in flight, except to the extent that certain maneuvers and procedures may be
performed in an aircraft simulator, or an appropriate training device.
(c) If the certificate holder's approved training program includes a course of training
using an aircraft simulator or other training device, each pilot must complete--
(1) Training and practice in the simulator or training device in at least the maneuvers
and procedures in this subpart that are capable of being performed in the aircraft
simulator or training device.
(2) A flight check in the aircraft or a check in the simulator or training device to the
level of proficiency of a pilot in command or second in command, as applicable, in at
least the maneuvers and procedures that are capable of being performed in an aircraft
simulator or training device.

This flying section of training requirements is unclear. The highly-automated

airplane can be flown either manually or automatically, and airlines can interpret this part

differently. When their training is complete, pilots training in traditional airlines or

training to manually fly the highly-automated airplane, theoretically have already met this
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part of requirements-even though the pilots do not know anything about how to use the

automation features in the cockpit. When pilots are actually sent to the highly-automated

cockpit, they could use all of those automation systems if they want, but may never have

been trained. This is a pitfall in the flying training requirement section.

Airliner's Approach to Meet Government Requirements

To satisfy the requirements of the FAR regulations and enroll enough pilot resources,

other than hiring already experienced military retired pilots, airlines conduct many

alternative training approaches to meet both the government and company needs. Several

examples such as Lufthansa Airline's ab initio training program, China Airline's spectrum

and advanced spectrum training program, and United Airline's collaborative program with

Florida Institute of Technology all show various methods of airlines conducting their pilot

training (details, see Appendix H).

The training programs conducted by each airliner meet the guidelines of the FAR

regulations for proficiency. Furthermore, they strengthen the knowledge and skill of pilots

through many different channels. Through these varied training methods, airlines meet

their manpower needs, and complete their pilots' qualifications.

FMS Based Training

The Phase 2 training, or advanced phase, is transition training. Selected pilots are

trained from Phase 1 traditional airplanes to highly-automated airplanes. With already

qualified basic flying skills, the focus is then on how to use on-board automation systems to
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effectively fly the airplane.

In a highly-automated cockpit, to know how to get the proper information quickly and

correctly is an essential part of the training. When pilots are able to give the FMS correct

commands, the FMS systems will then do the rest of the job. If the pilots do not know how

to rule the computer, the airplane will not cooperate. So in the Phase 2 training, airliners

have placed more emphasis on the FMS-based knowledge training.

It is essential that in a highly automated airplane the control process is as follows:

man (give commands); computer (FMS system receives commands and gives orders);

airplane (engine, elevator, rudder, follow pilots' order). A medium which stands between

the direct command and indirect command to the airplane is the FMS system. The function

of the FMS is to give more precise and correct controls of the airplane instead of depending

on pilots' varied judgment to do so. In other words, if you can control the computer well,

you can control the airplane well.

Definition of FMS Systems Training

The FMS training means to develop the pilot's understanding of the automation's

capabilities, limitations, modes, and operating principles and techniques, basic mode setting

as well as how to manage the system, instead of focusing on the basic flying skill training.

Because of the FMS training's unique features and functions, this training is separated into

two parts; the Skill-Based FMS training, and the Knowledge of Functional Theory-Based
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FMS training.

A. The Operating Skill-Based FMS Training

In this thesis, the skill-based FMS training is defined as the training focused on

teaching pilots how to quickly and efficiently operate the FMS systems in all flying phases.

Training should focus on the following: during all flight phases, what key board should be

input, where is that keyboard's location, what is the procedure, and what data need to be

inputted, to efficiently conduct a safe flight. The operating skill-based FMS training does

not emphasize knowledge of how and why the automation systems function. All that pilots

need to know is the procedures and actions to perform certain maneuvers. The emphasis is

then on how to do it quickly and correctly. It is a method to train pilots how to manage and

integrate the FMS systems functions and performance by the flightcrew during transition

training to the glass cockpit aircraft. The important areas are the processing of what, when,

where, how much, and in which format should the pilots to know about the operation of the

FMS systems. The purpose is to increase the pilot proficiency with regards to the

automation systems and to reduce pilot errors.

Training Assumption. We need operating skill-based training because the evidence show

that the input errors to the FMS systems under fairly severe time constraints, coupled with

high workloads and high stress situations, have long been acknowledged as a severe

problem (Lofaro,1991:884). Erroneous keyboard entry of data into FMS computer systems

and other keyboard devices on the flightdeck has become a major problem. Data entry
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errors can occur during initial programming and reprogramming of inertial navigation and

other flight management systems which require manual programming. To minimize pilot

error, requirements for training flight crews in the use of these devices should be generated.

B. The Knowledge-Based FMS Training In this thesis, the definition of knowledge-

based FMS training is training focused on teaching pilots to know how the FMS system

functions. Instead of learning what key should be punched in order to perform certain

maneuvers, knowledge-based FMS training teaches pilots why punching that key will cause

the airplane to maneuver that way. Pilots should know that, if they want the aircraft to take

a specific maneuver, they must press the correct button for that action; that is, they must

provide the automation systems with the command the engineers have designed it to

recognize (Wise,et.al., 1993:254). In other words, they need to know what would happen

when they punch a certain keyboard.

Training Assumption. Demosthenes et. al. indicate that pilots should be trained in the use

of automated systems so they clearly understand all modes of operation, mode interaction,

functional limits, and the design concepts for the process that automation uses to control the

aircraft or systems (Demosthenes and Oliver, 1991:25). Veillette indicates that high

technology offers many benefits, but the potential hazards of erring with these devices very

often are quite severe, so pilots must be aware of the proper use of such equipment. This

means more than just knowing how to program the device and being familiar with the

functions of varying modes (Patrick, 1996:18).
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The Difference Between Operating Skill-Based and Knowledge-Based FMS Training

The difference between skill-based FMS training and knowledge-based FMS training

can be defined as the "bottom up" vs. "top down" approaches.

The typical "bottom-up" skill-based FMS training can be defined as "teaching pilots to

learn the appropriate recipe for making their FMS work in standard or training situations."

But according to Wise et. al., this training does not enable pilots to acquire knowledge to

adjust to novel situations while flying the line (Wise,et.al.,1993:18), which is to train for

specific tasks, not an understanding of the FMS systems as a whole. Typical operating

skill-based FMS training can be found in United Airlines, the Airbus industry, and Air

Canada (see Appendix I).

The "top-down" approach or "knowledge-based" FMS training teaches pilots to

understand the functional structure of the FMS and better handle novel situations. This

training allows pilots to better predict the outcome of their FMS inputs, and encourages

pilots to understand "why" and "how" the FMS works, its logic, and helps them in forming

an accurate mental model (Wise,et.al.,1993:18). This training approach is yet to be

developed by airlines and the Federal Aviation Administration.

The Importance of Phase Two (FMS-based) Training

The FMS-based training is important because a qualified pilot, according to his or her

experience in controlling the airplane in his own way in a traditional airplane, might be
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confused by the characteristics of the FMS system in a highly-automated airplane. Pilots

must fully understand the character of the FMS system with its functions, capabilities,

limitations, mode settings, operating principles and techniques. If the pilot does not know

the system well and flies the airplane half on automatic and half on manual, it could be

dangerous and the problem could be serious.

In the CAL A300 case, the pilots wanted the airplane to descend to intercept the glide

slope, but the FMS gave the command to pitch up to go around in response to the activation

of the go-around switch. In a situation like that, the common sense of a pilot does not make

sense anymore. When those pilots pushed the yoke, the trimnible stabilizer gave the

counter command to cause the nose to pitch further up instead of bringing the nose down as

expected. The Autopilot and Go-around mode were doing their job. That is the feature of

automation.

The Air New Zealand and KAL 747 accidents give us further indications of the

importance of familiarity with the FMS systems issue. It was the pilots' input of the wrong

data into the FMS systems instead of flying skill deficiency which caused each of those

fatal accidents. If those pilots had input the correct data into the FMS system, those trips

would have been uneventful. Quite a different outcome would have resulted.

Referring to the accidents discussed earlier, we can see that the FMS systems were

only "doing their job" when accidents happened. The flying control of China Airline's

Airbus A300-600R followed the go-around and autopilot command to have a pitch up
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attitude. If the crews had simply let the FMS systems control the airplane, it would not

have become an accident. The Air New Zealand DC-10 and KAL B-747, too, followed the

preprogrammed data properly and flew it correctly but the outcome was a disaster. Those

accidents were not flying-skill related. They were the results of erroneous commands that

the pilots made which turned the outcomes into fatal accidents.

Those cases indicated that when a pilot does not know the FMS system functions, once

the malfunction or confusion happens, the pilot can do nothing. The outcome is

unpredictable and often causes chaos. When a pilot fully understand the FMS systems,

pilot has to do nothing. The FMS system will do everything for pilot. That is why the

FMS-based pilot's understanding of the automation's capabilities, limitations, modes, and

operating principles and techniques stands out as an important issue in highly-automated

airplane training. Many experts have already detected this importance. John K. Lauber, a

member of the National Transportation Safety Board said: "We have left some gaps and run

ahead of our ability to teach humans how to use sophisticated cockpit equipment such as

flight management and flight director systems properly." "Although the technology and

reliability of automated systems are impressive and have benefited the airlines, what is

missing are principles, rules and guidelines defining the relationships between that

technology and the humans who operate it" (Phillips, 1992:40).

Surma

The FAA regulations provide the basic rules for airliners to follow for recruiting,
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training, and deploying their pilots. However, Part 61 (135.345) and (135.347) clearly list

the requirements for Phase 1 basic training, but provide no specific requirements for Phase

2 FMS- based training. To meet the Phase 1 training requirements, airlines have followed

different channels to train their pilots, all of which have proved to be effective. Apparently,

what we need to do is to provide a better direction for airline to train their pilots during the

Phase 2 FMS based training which the FAA regulations do not specifically address.

Conclusion

The traditional training approaches focus on the flying skill training and basic

aeronautical knowledge. However, in the highly-automated airplane, because of its unique

automation features, the flying skill portion of training seems to be ignored. However,

pilots believe not only that they need more training for basic flying skills, but also that they

need more training in operating the flight management systems associated with the

knowledge training of how those systems function. Among those training requirements,

with the limited resources and time available, we have to find a balance among them.

According to the FAA regulations, all airliner pilots must receive adequate basic flying

skill training and be qualified. The question areas are the training areas dealing with the

automation features. With no strict requirements or regulations, airliners and pilots

themselves train in a self-disciplined manner. From a safety point of view, finding the best

balance between the skill of operating the automation systems and the knowledge of how
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those flight management systems function is a focal point for our study.
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IV. The Balance of Skill and Knowledge Based Flight Management Systems Training

In 1989, the Air Transport Association of America published a book about automation

and its conflict with human factors (ATAA: 1989). It listed some of the potential issues

arising around the new, automated aircraft which can be seen as the general summary of

new problem areas, shown in Table 2.

Table 2. The Problem Areas of the Highly-Automated Airplane

1. Reduction of workload in low workload phases of flight (i.e., long-haul over water).
2. Increase in workload in high workload phases of flight, (i.e., terminal area).
3. A potential for substantially increased head down time.
4. Difficulty in recovering from an automation failure.
5. Reluctance of flight crews to take over from a malfunctioning automated system.
6. Degradation of pilot/controller basic skills.
7. Complacency, lack of vigilance, and boredom.
8. Introduction of unanticipated failure modes.
9. Difficulty in detecting system errors.
10. Incompatibility between advanced automated aircraft, existing ATC capability and
the rest of the fleet.

The problems detailed in Table 2 highlight the importance of training concerning the

automation system's function and skill and indicate that there is a need to develop a training

philosophy to explore the advantages and to eliminate the disadvantages of the highly-

automated airplane. It is essential for us to provide better training to explore the benefits of

reduction of workload in low workload phases of flight and to reduce the disadvantages of

increasing workload in high workload phases of flight, including increased head down time,

39



difficulty in recovering from an automation failure, reluctance of flight crews to take over

from a malfunctioning automated system, degradation of pilot/controller basic skills,

difficulty in detecting system errors, and incompatibility among advanced automated

aircraft. Those are the key points for developing FMS-based training.

In Chapter III, we identified that basic flying training is guided by strict principles. All

pilots qualified to obtain their airline pilot license must maintain an equal level of quality in

all areas. However, the training requirements for the highly-automated airplane from the

government are vague. Different companies have different principles to train their pilots to

work with the automation. In this chapter, I would like to suggest a better training

philosophy for inclusion in the highly-automated cockpit training to improve flying safety.

Especially, I would like to address the balance between the two kinds of training dealing

with FMS systems. One is training for the skill to operate the Flight Management Systems

in highly automated airplanes, and the other is training to understand the functional theories

of the Flight Management Systems. In brief, my purpose is to reach a balance between

skill- and knowledge-based Flight Management Systems training to deal with new

technology.

Suggested Training Philosophies to Deal With the Automation Problems

Since we have defined the different training philosophies between skill- and

knowledge- based FMS systems training, it is important now for us to apply them to the

problem areas of the highly automated airplane to find a better solution to improve flying

safety.
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Matrix 1 : An Evaluation Matrix of Pilot Problem Areas of Automation

Matrix 1 (Table 3) compares the general problem areas and two FMS training philosophies

in each column to provide a better approach to cope with them. The general problem areas

are defined by the Air Transport Association of America (ATAA: 1989). In this matrix, the

suggested solutions are listed right; an analyzed explanation is provided below the matrix.

The purpose of these solutions is to provide pilots with information about how they spend

their time in FMS training.

Table 3.

The Problem Areas of Highly Automated Airplane and the Relevant Training

Problem Areas of Highly Automated Airplane Operating Knowledge Training
Skill Problem Needs
Problem

Probleml. Increase in workload in high workload Skill-Based
phases of flight, (i.e., terminal area). X Training
Problem 2. A potential for substantially increased Skill-Based
head down time. X Training
Problem 3. Difficulty in recovering from an Knowledge-
automation failure. X Based Training
Problem 4. Reluctance of flight crews to take over Knowledge-
from a malfunctioning automated system. X Based Training
Problem 5. Introduction of unanticipated failure Knowledge-
modes. X Based Training
Problem 6. Difficulty in detecting system errors. Knowledge-

X Based Training

Problems 1 through 6 listed in first column can each be defined as operating-skill based or

knowledge-based problem according to the data (pilot comments) collected by the Embry-

Riddle study (Appendix J). By referring to the definition and function of the operating
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skill-based and functional knowledge-based training, the suggested training need is then

provided in the last column.

Result Analysis

Problem 1 Increase in Workload. The problems of increased workload in the high

workload phase of flight occur primarily in the takeoff/departure and approach/landing

phases. In those phases, knowing the procedure and process to input data is relatively more

important compared to knowing what the functions of those pieces of equipment are.

Some typical pilots' comments, collected in the Embry-Riddle study, high-light the

need to train pilots to familiarize themselves with the operation skills of the FMS systems

to reduce the workload during high workload phases (Wise, et.al.: 1993). Typical comments

include:

Increased Workload In Preflight Phase

"Increased in some phases - preflight programming versus filling out old card manually
because programming requires entering more parameters than old card."

"Increases workload on the ground before flight due to more tests and set-up of departure
information."

"Obviously workload has increased in the preflight stages whether we program a flight
plan to computer disk in the office or work on the EMS in the aircraft."

Increased Workload When ATC Makes Change
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"Automation has increased workload. If I haven't flown it in several weeks as well as in
rusted situations, i.e., changed runway at last moment, or late issuance of a clearance."
"Workload is increased during approach phase with ATC changes to the arrival routing
or the approach."

"Increased workload in terminal area and last minute ATC changes."

"Workload is increased during descent and approach, if there are changes being issued by
ATC, and if you try to insert those changes into FMS. The resultant head down time is
dangerous."

Increased Workload During Descent/Approach

"Workload can increase dramatically on descent or approach. When flying
internationally, the unexpected can keep the non-flying pilots heads-down a lot."

"Most programming of FMS can be done before aircraft taxis out for takeoff. Any
preprogramming done on approach or departure adds tremendously to workload and in
my opinion, should be kept to a minimum."

The Suggested Solution. According to the problems stated above by airline pilots, it is

obvious that training in FMS operating skill is necessary. To efficiently reduce the

workload during those already heavy workload situations, more efficient operating skills of

the FMS systems are required. When pilots know how to manage and integrate the FMS

systems and the processing of what, when, where, how much, and in which format should

the pilots act in relation to the FMS systems, and can do so quickly and correctly, it will

reduce the feeling of work overload and can increase flying safety by reducing possible

erroneous entry to the keyboards. That is the purpose of operating skill-based FMS

training.

Problem 2 Increased Head Down Time. The head down time increased because pilots are

trying to figure out what to input and how to do this in the cockpit. This reduces their
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capability of looking for traffic. However, with basic flying skill inbred, pilots can transfer

to manual flight in case of emergency. Then, those problems are not life threatening. Many

typical comments by pilots are collected in the Embry-Riddle study:

"During initial FMS/EFIS ops, individuals spend excessive time in heads-down situation.
Become more heads-up as experienced is gained."

"A new systems or a pilot just introduced to FMS/EFIS can have too much heads down
time, therefore, decreasing safety considerably."

"The placement or location of FMS keyboards are not user friendly-lots of head down
and looking back-not outside."

"During approach, crew tendency to update the FMS according to ATC directives causes
two heads looking down and therefore no looking out the cockpit for the traffic."

The suggested solution. Reducing the head down time is also related to the proficiency of

operating the FMS systems. The definition of operating skill-based FMS training is

essential to solve the problems listed above. So the better solution to those problems is

training in operating skills for the FMS systems.

Problem 3-6 System Errors Problem. Problems 3-6 actually are the main causes of fatal

accidents. In these categories, if the pilot does not know how the systems function, an

accident is more likely to happen. It is difficult to identify the problem and difficult to

solve the problem. Follow lists many comments from pilots about the confusing aspect:

"There were many initial problems due to lack of familiarization and experience. ATC
frequencies were lost. Altitudes not captured. Screens went blank (flight plan erased)."
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"Autothrottle creates considerable confusion on takeoff, initial climb out and on go-
around."

"Main problem was calling up the correct display on the screen for the function that I
wanted to use or modify in a flight plan."

"Initially it is extremely difficult to figure out exactly how to program or pull up the data
you want, i.e., how to get the correct page up to program the system."

"In the black cockpit as long as everything is working nothing is enunciated, then when
there is a malfunction, recognition is slower because you never see the bezels illuminated
in normal conditions, so familiarity is lacking."

"It has greatly improved our ability to see the big picture. At the same time, it has
lowered our awareness of problems that become apparent upon the failure of a major
EFIS or FMS component. We tend to depend too much on the electronic displays of our
situation rather than keep up on the analog (brain) functions."

The suggested solutions. According to the definition of the Functional Knowledge-Based

FMS training, the better solution for those problems stated above is understanding the

function theories of the FMS systems. To understand all modes of operation, mode

interaction, functional limits, and the design concepts for the process that automation uses

to control the aircraft or systems is the key issue to solving those problems.

Matrix 2: The Pilot Response and the Suggested Training Need.

Matrix 2 (Table 4-7) identifies better training to reduce the problems encountered by

the pilots who fly the highly-automated airplane. The data base of response to problems on

this matrix comes from the questionnaire conducted by Embry-Riddle (for details, see

Appendix J). In these matrixes the first and second highest ranking problems is selected for
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analysis. A comparison of the definition and function of the skill-based and knowledge-

based training is again applied in these matrixes to conduct the suggested training needs.

Q. 1: "Briefly describe an operational problem--that you personally know of--involving the

automated features of your aircraft that could have had a negative consequence" (p. 163).

Table 4. Frequency of categorized responses for open-ended question 1 (n=339)

Response Category Frequency
Heads-Down/Inside Cockpit 47
Data Input Error 38
Altitude Problems "Busts" 25
Design/Interface 22
Training 20
Crew Communication 19
Equipment Failure 17
Check Data Entered 15
Autothrottle Incidents 14
System Software 13
Air Traffic Control 12
System Induced 12

Ranking Problem Training Need
Highest Ranking Heads-Down/Inside cockpit Operation Skill
Second Ranking Data input error Operation Skill

Q. 1 asked about the operational problem that pilots believed involved the automated

features of their aircraft that could have had a negative consequence. Both the highest and

second highest ranking fall under operating-skill as main problem. One CE-650 Captain

commented, "When systems are new to a crew, too much heads down in the cockpit. If

system malfunctions happened soon after takeoff, too much head down in cockpit would
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cause serious problem." In Chapter 3, the training assumption for the operating skill is to

reduce the possible input errors to the FMS systems under fairly severe time constraints,

coupled with high workloads and high stress situation. That is the purpose of operating

skill-based FMS training, to reduce the negative consequence of automated features by

minimizing the pilot error on erroneous keyboard entry.

Q3: "What operational features should be added to improve safety and/or reduce
workload" (P. 170).

Table 5. Frequency of categorized responses for open-ended question 3 (n=291)

Response Category Frequency
Simplify Software 43
Standardize Keypads and Location 27
Heads-up display 22
Traffic/Collision Avoidance system 16
Training 15
Put controls higher/more forward 14
Better/Expanded Databases 11
Standardization 11
Minimize display clutter 9
Other (AOA, back-to-basic-button) 9
Aural Warnings 5
Keep Past Waypoints Alive 4
Terrain/Obstacle Information Displayed 4
Airspeed Trend/Thrust Vector 3
Clear View of EFIS 3

Ranking Problem Training Need
Highest Ranking Simplify Software Functional Knowledge
Second Ranking Standardized Keypads and Location Operation Skill

Q. 3 asked which operational features should be added to improve safety and/or reduce
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workload. In this response, the suggestion to simplify the software high-lighted the

problem of understanding the FMS system. The skill-related problem of standardized

keypads and location ranked second. The insufficiency of knowledge of FMS systems with

a complex software could cause huge problems. Pilots want a simpler software which

reflects their belief that high automation features are too complex for them. Thus, before

the engineers create a simplified software, the training to understand the functional theory

of the automation software is a must. This is critical to aviation safety.

Q4B: "What effect has automation had on your workload? Where has it increased
workload?" (175).

Table 6. Frequency of categorized responses for open-ended question 3 (n=129)

Increased Workload responses Frequency
Preflight Planning 56
ATC Changes 19
Descent/Approach 15
Initial Learning 7
Terminal Area 7
Takeoff/Departure 6

Ranking Problem Training Need
Highest Ranking Preflight Planning Knowledge + Skill
Second Ranking ATC Changes Operation Skill
Q. 4B asked about the effect of automation on increased workloads. Preflight planning

ranked highest. This problem involved both what data are needed and how to apply them.

As a CE-560 Captain commented: "Increases workload on the ground before flight due to

more tests and set-up of departure information." The need to be familiar with the operating

skill to handle the set-up and test quickly and correctly is essential to reduce the workload.
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Both skill and knowledge training are needed to solve this problem.

In this open-ended question, ATC changing directions, causing an increased

workload as pilots reorganized their program, ranked as the second most important

problem. As pilots commented "Initial learning phase is significantly increased. After

about 20-30 hours of hands on experience workload decreases." Pilots need to practice

operating skill more to quickly and correctly react to the ATC change by inputting

necessary data into the FMS systems.

Q5C: "Describe any problems that you had in an automated aircraft during (a) your initial

operating experience, and (b) your subsequent operating experience" (p.189).

Table 7. Frequency of categorized responses for open-ended question 5 (n=122)

Initial Operating Experience Frequency
General Confusion 9
Getting Use to EFIS 7
Calling up Correct Page/Display 6
Heads-Down/Inside Cockpit 5
Push Wrong Buttons/Slow Entering Data 5
Too Much Going On 5
Uncertainty in Programming 5
Other 2

Ranking Problem Training Need
Highest Ranking General Confusion Functional Knowledge

Second Ranking Getting Use to EFIS Operation Skill

Q. 5C asked pilots about problems they had in an automated aircraft during (a) the initial

operating experience, and (b) subsequent operating experience. Getting confused ranked as

49



the highest problem, which falls into the knowledge base of training area. As a Captain

commented "Autothrottle creates considerable confusion on takeoff, initial climbout and on

go-around" and "Main problem was calling up the correct display on the screen for the

function that I wanted to use or modify in a flight plan." With these kinds of confusing

activities, the flight duty could be dangerous. Pilots need to know the functional theories of

these modes. This indicates the need to strengthen knowledge-based FMS training. The

second-highest ranking experience is getting used to EFIS. This is mainly a skill-based

problem. As pilots commented: "Getting used to the EFIS display was the hardest.

Initially it is extremely difficult to figure out exactly how to program or pull up the data

you want, i.e., how to get the correct page up to program the system." When pilots practice

more on the operating of the EFIS system, this problem can be reduced. However, lack of

familiarity with the operating skill of the EFIS can cause pilots to be slower in completing

their tasks, and the confusion of the EFIS system can be fatal. Therefore, both operating-

skill and functional knowledge of that system should be developed.

Summary

After evaluating these two matrixes, we can conclude that the two FMS-based training

philosophies can each solve part of the problems of the highly-automated airplane's

features:

1. The operation skill-based Flight Management Systems training can improve the

proficiency and reduce heads-down time and help pilots become more familiar with the

automation operating procedures.
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2. The functional knowledge-based Flight Management Systems training can solve the

problem areas of difficulty in recovering from an automation failure, difficulty in detecting

system errors, and reluctance of pilots to take over from a malfunctioning automated

system.

3. In normal and routine operating conditions, the operation skill-based Flight Management

Systems training is more helpful; however, in situations in which an automation system

malfunction happens or in abnormal automation function situations, the functional

knowledge-based Flight Management Systems training is exclusively important.

4. Lack of operation skill to operate the flight management systems will cause inefficiency

and increase the heads-down time during flight; lack of knowledge of the functional theory

of the flight management systems in emergency situations will cause fatal accidents.

Cases Analysis (CAL and Airbus) With the Suggested Training Philosophies

The CAL A300 and France A330 fatal accidents in 1994 can be seen as typical

accidents characteristic of highly-automated airplanes. They both demonstrated the

characteristics of silence, surprise, and unpredictability of the highly-automated airplane.

After defining the function of operating skill-based FMS training and knowledge-

based FMS training and suggesting a problem-solving method in Matrix 1 and 2, the next

concern would be to apply those training philosophies to the accident cases. The purpose of

this step is to demonstrate whether the assumptions are adequate or.
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China Airline Case. Referring to the China Airline Flight 140, Airbus 300-600R accident

at Nagoya, Japan, April 26, 1994, we note that preliminary analysis of the crash cause

suggests that a shift from manual to autopilot resulted in cockpit crew confusion. The

digital flight data recorder and the cockpit voice recorder show that the crew engaged,

disengaged, and then re-engaged the take-off/go-around switch:

The cockpit voice recorder indicates a change in the landing-mode. It was at this
point that a crew member inadvertently activated the takeoff/go around (TOGA)
switch. The airplane reverted to automatic go-around mode, and began to fly above
the glide slope. The captain warned the first officer twice that it was engaged.
However the TOGA could not be disengaged. The First Office applied nose down
elevators in an effort to recapture the glide slope. The airplane reacted as rose above
the glide slope, and the pilot was still applying nose down elevators input.

At this point, the Airbus analysis shows that the crew engaged the autopilot.
With the autopilot's autotrim function deflected, the trimmable horizontal stabilizer
(THS) was moved to its maximum nose-up deflection. Since the flight directors were
still in go-around mode, the autopilot also was in go-around mode. As a result, the
aircraft was put in a nose-up attitude.

Still, the crew continued to apply nose-down inputs by overriding the autopilot as
it tried to recapture the glidepath for a landing. Such a tactic does not work because as
soon as the inputs are stopped the autopilot returns to flying its original go-around
flight path. In such a configuration, since the stabilizer efficiency is greater than that
of the elevator, the aircraft could reach an abnormal pitch-up angle leading to an
airspeed decay as the pilot puts stronger force on the flight control column.

At about 570 feet, both autopilots were disengaged. At about 400 feet, the alpha
floor function (angle of attack) was triggered. Both engines accelerated normally to
maximum thrust. Coupled with the THS at maximum nose-up deflection, the pitch
attitude achieved at least 36 degree. Flap/slats were retracted from 30/40 degree to
15/15 degree, but the aircraft was in a stall from which it could not recover.
(Mecham: 1994)
This case highlighted many presently existing automation problems shown in Matrix

1: the difficulty in recovering from an automation failure, reluctance of flight crews to take

over from a malfunctioning automated system, introduction of unanticipated failure modes,
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and difficulty in detecting system errors; and in Matrix 2: the general confusion issues. As

we rank those problem areas, they are mostly FMS knowledge-based problems.

Mr. Bernard Ziegler, Airbus senior vice president of engineering and former chief test

pilot commented on this accidents:

" Selection of the go-around mode during approach, causing the autothrottle to give go-
around power. The autopilot was not connected, but the flight director bars would
command a go-around.

" Engaging the autopilot after the go-around had been selected. The autopilot will engage
in the mode used by the flight director, here causing the aircraft to pitch up. "It's very
hard to understand why the autopilot was engaged." "Maybe the pilot expected to be
more comfortable with the autopilot on, but forgot it was in go-around."

" The crew fought the autopilot to push the aircraft back to the glideslope. The autopilot
countered by moving the stabilizer trim to within roughly 1 degree of full up.

" As the aircraft was pitching up through 40 degree at 115 kt., the crew retracted the flaps
to up, increasing the stall speed and further increasing the pitch-up moment
(Dornheiem: 1995).

After analyzing Ziegler's comments and comparing the three types of training

discussed earlier (basic flying skill, FMS operating skill, and FMS function knowledge), we

can see that this accident does not appear to be due to pilots' flying skill nor FMS operating

skill. Actually CAL vice president/Flight Operations Zhang Guang indicated that the First

Officer had done very well on his transition, scoring 98 out of 100 (Sekigawa,1995:32). It

was the lack of FMS functional knowledge which caused the accident. If the pilots had

fully understood the theory of the FMS system, they would not have been confused about

the situation. The pilots could simply have let the autopilot conduct a go-around.

However, the difficulty of detecting the problem and confusion caused man/machine
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conflict and resulted in a crash.

After analyzing this case, we can conclude that if the pilots had selected the manual

control and applied their basic flying skill at that moment, the accident could have been

avoided. But as to why the pilots chose to manually control the airplane and fought with

the automatic command, the answer is more likely that they did not thoroughly understand

the theory of the function of the A300 flight management systems. This conflict fell into

the problem areas of difficulty in recovering from an automation failure, reluctance of

flight crews to take over from a malfunctioning automated system, introduction of

unanticipated failure modes, and difficulty in detecting system errors.

France Airbus-A330 Case. On June 30, 1994, a GIE Airbus Industry owned-Airbus A330-

322 crashed at Toulouse-Blagnac airport for a test flight mission. All seven crewmembers

were killed. The accident description follows:

For the need of that test flight, that takeoff was made with a very after CG. The
airplane climbed to a high pitch attitude, and the crew engaged the autopilot and
simulated a left engine failure. Within 5 seconds after takeoff, several attempts to
engage the autopilot were unsuccessful. After it was engaged, activation of the
autopilot was delayed.

The captain reduced the thrust on the left engine to idle as soon as the autopilot
was engaged and then cut off the blue hydraulic system. Immediately after it activated,
the autopilot switched to altitude acquisition, due to the high aircraft climb rate. From
this moment, the ALT mode control law pitched up the aircraft in attempt to reach the
selected altitude. Automatic go-around (Alpha floor protection) then activated and
was immediately stopped by the captain who reduced to idle the right engine as soon
as roll control was lost to rapidly recover symmetry on the roll axis. Under these
conditions, an indication of invalid information was sent to the flight control
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computers by the inertial reference units, which caused the flight control system to
revert to direct law. The pilot managed to regain control too late to avoid impact with
the ground. The aircraft crashed with a pitch attitude of around -15 degree. (A330
Crashed," 1995:72)

In this case, the unique highly-automated accident characteristics of silence, surprise

and unpredictability were once again shown. This test A330 crash raises new questions

about highly automated, state-of-the-art glass cockpit systems, pilot interaction with such

systems, and the risks tied to the flight crew's overconfidence in them (Sparaco,1994:20).

The autopilot suddenly switched to the altitude acquisition mode and started to perform the

designed function. When this occurred, the situation at that moment exceeded the pilots'

expectations. Even though the captain tried to recover from the automation command, it

was too late. The investigating team also cited other key factors:

1. Selection of a 2,000 feet altitude autopilot setting. The absence of pitch limit
protection in the autopilot's altitude acquisition mode played a decisive role in the
accident.
2. Selection of the takeoff-go around (TOGA) maximum power setting for the flight.
The crew should have selected the lower "Flex 49" power setting (Flex 49 is a variable
power setting that provides full takeoff thrust at a maximum outside temperature). After
the left engine's throttle was reduced to idle as part of the test, asymmetric power
conditions became extreme.
3. Selection of a -2.2 degree trim setting. A zero setting have been preferable to
accommodate the aircraft's after C.G. loading.
4. An imprecise distribution of tasks among crewmembers.
5. A tardy decision by the pilot-in-command to regain manual control after the
emergency developed on autopilot. (Sparaco, 1994:20)

However, because the captain had adequate knowledge about the automation system

functions, we assume that if captain had had enough time to correct that situation, he

should have been able to solve the problem and avoid an accident. This case did show
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that the automation could go wrong without any warning or pilot input error. The key

point then is "can a pilot solve the malfunction of automation quickly and correctly?" In

this answer, as I have already defined on the definition of knowledge-based FMS

training, the need is for knowledge-based training to understand the functions of the

automation systems.

Conclusion

After evaluating the purpose and function of the operation skill-based FMS training

and Functional Knowledge-Based FMS training, we can conclude that operating skill can

help pilots reduce head-down time and decrease workload during preflight/ re-programming

the FMS systems. Pilots can more quickly and more efficiently command the FMS systems

during flight and can avoid mistakes like punching the wrong button. This is absolutely

helpful in routine and normal flight. However, in abnormal or emergency situations, merely

depending on the skill of operating the flight management systems is not adequate. On the

other hand, the functional knowledge-based FMS training is helpful to analyze the system

functions and solve the abnormal automation problems of the automation systems. Pilots

can gain benefits from functional knowledge-based FMS training to better recover from

automation failure, becoming more willing to take over from a malfunctioning automated

system and more easily detecting system errors.
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V. Conclusion

The Highly-Automated Airplane and Safety

The safety record has proved that the highly-automated aircraft, despite some accidents

or incidents, is safer than the old generation airplane operated by the airlines. David

indicated "Airbus did not have a fatal accident for 16 years before the A320 crash at

Habsheim in 1988. The A320 has experienced 2.5 hull loss accidents per million

departures compared with 6.14 for the Boeing 707." (Hughes,1995c:53).

From many pilots' point of view, automation enhances safety and reduces the

workload. As a typical response from Embry-Riddle Aeronautical University's attitude

survey shows "Automation reduce the workload greatly - makes the flights much

smoother" (G-M, CL-601 - Captain.). That comment highlights the positive consequence

of adaptation of automation systems in highly-automated aircraft.

Training is Essential to Safety

However, to some pilots, especially those who are not familiar with the automation

systems, the highly automated aircraft seems dangerous. "Why did it do that?" was the most

common remark. Some comments from pilots indicated their initial problems due to lack

of familiarization and experience: "ATC frequencies were lost." "Altitudes not captured."

"Screens went blank (flight plan erased)." "Flight director modes mis-selected." Those
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experiences all highlight the importance of proper training for highly-automated airplane.

Even though Chapter 4 suggested that from safety's point of view, among the three training

parts, the FMS functional knowledge-based training is the most important, we can not

ignore the equal importance of the other two training parts.

No matter what kind of airplane we are talking about, the basic pilot skill should

always be emphasized. That is the bottom line to protect the passengers' lives. Today, the

airplane designers presents many types of FMS systems that "can do" a lot of tasks to assist

pilots. On the other hand, airlines have to train their pilots "how to do" to use those

automation systems. The evidence shows that the most dangerous situation is when the

pilot does not know the automation system well, yet tries to fly the aircraft automatically.

Besides the basic flying-skill training, pilots have to be trained by the operating skill-

based FMS training to know the important areas of what, when, where, how much, and in

which format to operate the FMS systems and to increase the pilot proficiency and to

reduce pilot errors toward it.

Most importantly, pilots need the knowledge-based FMS training for understanding

the functional structure of the FMS systems and be able to better handling the novel

situations in emergency. This training allows pilots to better predict the outcome of the

FMS outputs, and understanding "why" and "how" the FMS works with its logic, and

enables pilots to have an accurate mental model.

58



The Missing Part of the Training

Under the FAA regulations, pilots can be trained in a traditional airplane and then be

sent to an airplane with highly-automated features. Also, because of lack of specific FAA

regulations on phase two training (as discussed in Chapter 3), the training philosophies in

most airlines are ambiguous. Many airlines keep this part of training as classified material.

However, the questionnaire data collected by Embry-Riddle University (Wise,

et.al.,1993:181), indicate a shortage of phase two training and reflects the need for that.

Those sample pilot comments identified the missing part of the current training program:

"I didn't have any initial training other than reading the manual myself and the chief
pilot giving me hands on pointers on a trip" (CL-600/601-3A, G-1 159-Capt.)

"My initial training involved myself on the ground with a manual and sitting in a
powered up electronic system. Then I went on a trip and was given instruction on
the way. This is very typical. Some pilots don't even have the desire to sit in the
aircraft on the first trip" (CE-550/650-Capt.)

"There was none. We learned on the job and it was difficult. There were many
mistakes and we were lucky not to get violated. Not recommended." (G-III-Capt.)

"No initial training was received - this is my greatest concern as we keep advancing
in automation. Training institutions and manufactures must get together and
offer initial as well as current training to pilots who will be flying these systems.

Technology is moving very fast; let's be sure we are on the same page" (G-III,
CE-650-Capt.)

It is true that airlines have to use their employees efficiently. They may not have

enough time to both deploy their crews on the job and at the same time dispatch them to

training in a simulator. Some airliners do not even have enough simulators for pilot

training. Part of this problem can be seen when as the newer model airplane rolls off the

production line, and the simulator is still on its way to development. More frequently,
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when an airplane changes its software design for modification, the simulator can not keep

up with the change (Wise,et.al.,1993:253).

Those comments collected above in the Embry-Riddle study indicated that emphasis

should be placed on automation knowledge and skill training. Poor training materials like

lack of simulators or mock-up cockpits and improper emphasis on simulator training and

improper training philosophies all contribute as major defects of phase two training.

Currently many suggestions and recommendations have been made in many fields by

people who are concerned about the insufficient training in the highly-automated era. FAA

and major airlines associated with airplane manufacturers are all working on research to

improve current inefficiencies. The FAA signed the Advanced Qualification Program

(AQP) rule on September 26, 1990. This regulation is designed to improve aircrew

performance and allows certification holders that are subject to the training requirements of

Parts 121 and 135 to develop innovative training programs that incorporate the most recent

advances in training methods and techniques (Kern,1990:3). FAA is also preparing to

create new rules to cope with those recommendations received from the flight crewmember

training work group of the Joint Task Force (Wise, 1990:3).

Recommendation

Automated aircraft are taking over the skies. Glass cockpits continue to receive mixed

reviews from pilots. Some pilots who fly highly-automated aircraft say they have never

been busier, even though the purpose of automation feature was to reduce pilot workload
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and increase safety (Hughes,1992a:50). Some pilots enjoy it and anticipate the next

generation of automation.

No matter how much progress the technology has achieved, pilots are still the final

decision-makers in the cockpit. Their decisions and ability to operate the airplane will

decide the result of a flight. The pilots' goals are to safely operate and complete the flight;

their role is to command the operation of the aircraft, using all available resources to

achieve the goal; their functions are monitoring, planning, communicating, controlling,

operating, and most importantly, making the final decision (Demosthenes and Oliver,

1991:22). The pilots' decisions and abilities to control the highly automated airplane

greatly depend on the degree of training they have received.

The modem highly-automated airplane has its unique flight character and unique

problem areas and requires special training to deal with them, training which is different

from the traditional training. Ronald Lofaro of the FAA summarized the new problems

created by the automation:

1. Too little workload in some phases of flight and too much workload associated with
reprogramming when flight planes or clearances are changed.
2. The potential for substantially increased head down time.
3. An inadequate cognitive map, or situational awareness, of what the system is doing,
making recovery from automation failures sometimes problematic.
4. Hesitancy of humans to take over from an automated system, even when there is
compelling evidence of a problem.
5. Degradation of basic skills.
6. Job dissatisfaction associated with the lack of a challenge.
7. Complacency, lack of vigilance, and boredom. (Lofaro: 1991:880)

The trade off of advantages and disadvantages of the highly-automated airplane must be

carefully evaluated by the pilots according to their experience and capabilities. To the
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pilots themselves, when to use automation and when to use manual flight is a decision

made according to their ability to conduct a safe flight. That is the bottom line for pilots to

consider. To conduct a safe flight in the highly-automated airplane in all situations, normal,

abnormal, and sudden failure of the automation systems, the proper training should be given

to each pilot to cope with different situations.

Besides those recommendations of balance of pilot training, the airlines, the FAA, and

the aviation industry should also provide crewmembers sound training tools to assist them.

Currently, the airlines' greatest need is a guiding principle to efficiently train their

crewmembers. Without those regulations, we can not guarantee the quality of pilots who

fly the highly-automated airplanes. Also, the checkride philosophies and evaluation criteria

should undergo some degree of change to fit the safety needs in the highly-automated

airplane cockpits. Currently, pilots of many airlines are not required to perform recoveries

from most types of unusual attitudes in training or on checkrides, and training programs are

still strongly oriented toward acquisition of the necessary knowledge and development of

skills required to pass a checkride. Little concern is directed toward the ability of the crew

to accomplish the job- related objectives or to effectively manage the resources available on

the flight deck (Ekstrand,1990:8). However, fatal accidents involving highly-automated

airplanes all indicate the ability to recover from an automation system's malfunction or

failure is important to guarantee aviation safety in the highly-automated airplane. In

response to the new technology environment, we need to expend efforts to integrate all

three skills: the basic flying skills, the operating skills to operate the FMS systems, and the
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thorough knowledge of the functional theories of the FMS systems to improve the flying

safety in the highly-automated era.

Appendix A: Acronyms
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ASRS aviation safety reporting system

CDU control display units

CRT cathode ray tube

ECAM electronic centralized aircraft monitor

EFIS electronic flight information systems

EICAS engine indicating and crew alerting systems

FAC flight augmentation

FCC flight control computer

FMCS flight management computer system

FMS flight management system

MCP mode control panel

PFD primary flight display

PMC performance management computers

SID standard instrument departure

TCAS collision avoidance system

TCC thrust control computer

VNAV vertical navigation
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Appendix B: CAL A300 Crash Moment Cockpit Voice Record

First officer Chuang Meng-rong was piloting the airplane with Captain Wang Lo-chi

when Nagoya tower advised that CAL flight 140 had passed the outer marker of

runway 34. It was 8:12 at night with clear visibility and wind from 290 degree at 6-mph.

At 8:14 PM the TOGA engaged.

8:14.10 autopilot ON.

Captain: "You, go-lever is ON. Reduce it a little.", "Push it down. Disengage

throttle. It's too high, too high." "It's on go-around mode."

Captain: "Don't worry. Push it again slowly. Keep it with your hand."

"Push it again, push it again, push it again." "It's still in go-around mode."

8:14.40 Auto-pilot disengage warning sound appeared. Auto pilot "off'.

F/O: "Still it could not be pushed."

Captain: "Don't worry. Do it calmly." "Ok, I try."

F/O: "Disengage. Disengage."

Captain: "What is this?"

F/O: "Disengage"

Captain: "Go lever." (DFDR showed go lever operated).

Captain: "Goddamn it! Why it comes in this way?"

F/O: "Nagoya tower. CAL going around."

TWR: Roger. Stand-by further instruction.

Captain: "(Aircraft) will stall at this rate."
Captain: "No way! No way!"

8:15.25 Engine sounds become louder. Stall warning sound.

Captain: "Don't worry. Don't worry. Don't be upset. Don't be upset.":

The Ground Proximity Warning System sounds, "Terrain, Terrain."

F/O: "Power!"

The stall warning sounds and continue until captain yielded :"No Way! No Way!" as the

aircraft crashed at 8:15.47. (AW & ST May 2, 1994 p.26)
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Appendix C: Airbus Industry A330 Crash Moment Cockpit Voice Record

Time Captain Copilot Flight Engineer
27.40 So we have an engine

failure at takeoff to do,
yes, so you have to fly
150 knots or more, to
engage the autopilot,
and then to fail one
engine and state three
nine seven two is
active.

28.03 So the wheels are all good, we O.K. O.K., euh Elect IDG,
have config two one minor fault

28.10 Yeach, well we know about
that but we can just clear that
_ ya'll

28.16 And.. we have the same speeds
as last time

28.17 O.K. yeah,yeah
28.19 Flight director is on
28.23 Spoilers cat three dual Spoilers. We will take-off

then left turn, ninety two
hundred seventy, then
again, ILS approach
fifteen left

28.42 You take..you take the I fly now,yeah
airplane?

28.46 What you do now is rotate, let Yeah
the speed go above V2..and put
Ithe autopilot one in

28.55 O.K. As soon as autopilot one Yeah O.K.
is in, throttle one engine back,
and I will take the hydraulics
off. O.K.?

29.05 O.K. Kilo Hotel ready to
takeoff as you wish.
We keep runway heading
and ready for...

29.16 O.K. runway heading
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29.21 Are you ready behind? ___________Yeah

29.22 We are ready, here we go,
___Michel_____________

29.27 That. careful with the Still TOGA right?
____power,initially ____________

29.30 ..cause of the c.g. till we get the
.. wait till we see thw airspeed ____________

29.37 Until we go to full power O.K.
29.45 Right,you can go ahead now TOGA speed reference

I_______________ systemn(SRS)

29.49 TOGA SRS ________

29.59 100 knots _________

30.03 Rotate____________

30.08.150, gear up __________

30. 10 lAutopilot in__ ________

30.11 And again. and again ____________________

30.14 Engine failure___________

30.17 Pump fault __________

30.22 And I ... I don't know what's
___gone____________

30.25 Tha..That's not correct. I have
control
(Speed, speed,speed voice

,___alarm)

30.27 1Ihave control
30.31 stall, stall, stall voice alarm Take care the speed
30.33 Stall alarm____________ Take care

30.36 pull-up,pull-up alarm___________ _________

30.39 Icontinuous stall alarm I___________ _________

30.42 Irecording ends I___________________

Source from Aviation Week & Space Technology/August 8, 1994
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Appendix D: Aviation Week List of Accidents/Incidents of Man-Machine Interface
Problem (Source from Aviation Week & Space Technology/January 30,
1995 p. 59)

1. July/3/1988 A320 Gatewick
FMS programmed for 3 degree flight path, but inadvertently was in V/S mode, almost landed 3
mile short. At least six incidents of V/S flight path confusion have been reported.

2. June/26/1988 A320 Habsheim
Low, slow, idle pass at air show. Ran out of energy and flew into trees. Fatal.

3. June/8/1989 B767 Boston
On A/P ILS approach, aircraft overshot the localizer. Captain switched from approach to heading
select mode to regain the localizer, disengaged the A/P, and used the F/D. Since the G/S had not
been captured, the F/D was in V/S mode commanding 1,800 fpm. descent instead of staying on
G/S. Alert from the ground proximity warning and tower caused a go-around from about 500 feet.

4. Feb/14/1990 A320 Bangalore
Inadvertent altitude acquisition and open descent modes. Fatal crash.

5. Feb/11/1991 A320 Moscow
Pilot versus autopilot dispute caused aircraft to go out of trim, causing five pitch cycles peaking at
70-80 degree nose up and 30 degree nose down. Airspeed varied from nearly 300 kt. to below 30
kt. in roughly 4,000-ft. cycles on a generally climbing path. Roll angles exceeded 100 degree. The
aircraft was recovered.

6. Jan/20/1992 A320 Strasbourg
Evidence suggests crew selected 3,300 fpm. on approach instead of 3.3-degree flight path angle.
Crew also violated crossing altitudes. Fatal crash.

7. April/26/1994 A300-600 Nagoya
Pilot fighting autopilot caused trim to go to full nose-up position, causing uncontrollable stall when
power was applied. A/P was in go-around mode and crew was trying to stay on G/S. Fatal crash.

8. June/21/1994 B757-200 Manchester
After takeoff, at 2,200 ft. the altitude capture mode cut power back while the flight director bars
appeared to command a pitchup, and then disappeared. Airspeed dropped toward V2 and the crew
pitched down to 10 degree. CAA says "problem considered to be well-known and adequately
trained."

9. June/30/1994 A320 Toulouse
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Engagement of altitude acquire mode at unexpected point caused steep pitchup and loss of airspeed
during engine failure simulation. Airbus chief test pilot distracted by operating systems. Aircraft
went out of control and crashed.

10. Sep/24/1994 A310-300 Orly
During approach, flap placed overspeed caused computer mode to switch to flight level change,
causing autothrottle to advance to climb power. Trim went to full nose-up for unknown reasons
(commanded by the manual system) while elevator was pushed full nose-down. Aircraft pitched
uncontrollably into a stall, but was recovered.

Legend: A/P=autopilot F/D=flight director G/S=glideslope V/S=vertical speed
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Appendix E: FAA Human Research Team List of Accidents

1. 12/29/1972 Miami L-1011 Eastern
Flightcrew members became immersed in an apparently malfunctioning landing gear.
Airplane was in control wheel steering mode. Altitude hold inadvertently disengaged by a
light force on the control wheel. Altitude alert aural warning not heard by flightcrew.
Fatal crash.

2. 7/31/1973 Boston DC-9 Delta Air Line
Airplane landed short during an approach in fog. Flightcrew was preoccupied with
questionable information presented by the flight director. Fatal crash.

3. 2/28/1984 New York DC-10 Scandinavian
Malfunctioning autothrottle system during approach resulted in crossing the runway
threshold at 50 knots above reference speed. Runway was wet, touchdown was 4700 feet
beyond the threshold of an 8400 foot runway. Airplane overran runway, minor injuries.
Complacency and over-reliance on automatic systems cited.

4. 2/19/1985 San Francisco B747SP China Airlines
Loss of power on one engine during autoffight. Autopilot tried to compensate until control
limits were reached. Captain disengaged autopilot, airplane went into unusual attitude high
speed dive, but was successfully recovered. Autopilot masked approaching onset of loss of
control.

5. 6/26/1988 Habsheim A320 Air France
Low, slow fly over at air show. Ran out of energy and flew into trees. Possible
overconfidence in the envelope protection features of the A320, Fatal crash.

6. 7/3/1988 Gatwick A320
Programmed for 3 degreeflight path, but inadvertently was in vertical speed mode, almost
landed 3 miles short.

7. 1/1989 Helsinki A300 KARAir
While making an ILS approach, the takeoff/go-around lever was inadvertently depressed.
In response to the unexpected and sudden nose-up change in the airplane's attitude, the
flightcrew immediately reacted by re-trimming.

8. 6/8/1989 B767
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On autopilot ILS approach, airplane overshot the localizer. Captain switched from
approach to heading select mode to regain the localizer, disengaged the autopilot, and used
the flight director. Since the glide slope had not been captured, the flight director was in
vertical speed mode commanding an 1,800 fpm rate of descent. Alert from the ground
proximity warning and tower resulted in a go-around from about 500 feet.

9. 2/14/1990 Bangalore A320 Indian Airlines
Inappropriate use of open descent mode. Fatal crash.

10. 6/1990 San Diego A320
Pilot mistakenly set vertical speed of 3,000 fpm instead of 3.0 degree flight path angle.
Error was caught, but airplane descended well below profile and minimum descent altitude.

11. 2/11/1991 Moscow A310 Interflug
Pilot intervention in auto-pilot coupled go-around resulted in the autopilot commanding
nose-up trim while the pilot was applying nose-down elevator. Autopilot disconnected
when mode transition to altitude acquire mode- force disconnect not inhibited in this mode
as it is in go-around mode. Airplane ended up badly out of trim and went through several
extreme pitch oscillations before the flightcrew regained control.

12. 1/20/1992 Strasbourg A320 Air Inter
Evidence suggests flightcrew inadvertently selected 3,300 fpm descent rate on approach
instead of 3.3 degree flight path angle. Fatal crash.

13. 9/14/1993 Warsaw A320 Lufthansa
Wet runway, high tailwinds -- After touchdown, the air/ground logic did not indicate the
airplane was on the ground, and delayed deployment of ground spoilers and reversers.
Airplane overran runway. Two fatalities.

14. 9/13/1993 Taihiti 747-400 Air France
VNAV approach with autothrottle engaged, autopilot disengaged. Upon reaching the
published missed approach point, VNAV commanded a go-around and the autothrottle
advanced power. After a delay, the flightcrew manually reduced power to idle and held the
thrust levers in the idle position. The airplane landed long and fast. Two seconds prior to
touchdown the number one engine thrust lever advanced to nearly full forward thrust and
remained there until the airplane stopped. Reverse thrust was obtained on the other
engines. The spoilers were not deployed -- the automatic system did not operate because
the number on thrust lever was not at idle, and the flightcrew did not extend them manually.
The flightcrew lost directional control of the airplane as the speed decreased and the
airplane went off the right side of the runway.

15. 6/6/1994 Hong Kong A320 Drangonair
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After three missed approaches due to lateral oscillations in turbulent conditions, a landing
was made and the airplane went off the side of the runway. The flaps locked at 40 degrees
deflection (landing position) just before the first go-around due to asymmetry. Asymmetry
caused by rigging at the design tolerance combined with gust loads experienced. In
accordance with published procedures, flightcrew selected CONF 3 for landing, which
extended slats to 22 degrees. With autopilot engaged, lateral control laws correspond to
control lever position. Under manual control, control laws correspond to actual flap/slat
position. The configuration CONF 3, with flaps locked at 40 degrees, is more susceptible
to lateral oscillations with the autopilot engaged. After a similar incident in November,
1993, experienced by Indian Airlines, Airbus issued an Operations Engineering Bulletin to
leave the control lever in CONF FULL if the flaps lock in that position.

16. 4/26/1994 Nagoya A300-600 China Airlines
Flightcrew inadvertently activated the go-around switches on the throttle levers during a
manually flown approach. This action engaged the autothrottles and put the flight
guidance system in go-around mode. Flightcrew disconnected the autothrottles, but excess
power caused divergence above the glide slope. Flightcrew attempted to stay on glide slope
by commanding nose-down elevator. The autopilot was then engaged, which because it
was still in go-around mode, commanded nose-up trim. Flightcrew attempted go-around
after "alpha floor" protection was activated, but combination of out-of-trim condition, high
engine thrust, and retracting the flaps too far led to a stall. Fatal crash.

17. 6/21/1994 Manchester B 757-200 Britannia
Altitude capture mode activated shortly after takeoff, autothrottles reduced power, flight
director commanded pitch-up before disappearing. Airspeed dropped toward V2 before
flightcrew pitched the nose down to recover.

18. 6/30/1994 Toulouse A330 Airbus
Unexpected mode transition to altitude acquire mode during a simulated engine failure
resulted in excessive pitch, loss of airspeed, and loss of control. Pitch altitude acquire
mode. Fatal crash.

19. 9/24/1994 Paris-Orly A310-300 Tarom
Overshoot of flap placard speed during approach caused a mode transition to flight level
change. Autothrottles increased power and trim went full nose-up for unknown reasons
(autopilot not engaged). Flightcrew attempted to stay on path by commanding nose-down
elevator, but could not counteract effect of stabilizer nose-up trim. Airplane stalled, but
was recovered.

20. 10/31/1994 Roselawn ATR-72 American Eagle
In a holding pattern, the airplane was exposed to a complex and severe icing environment,
including droplet sizes much larger than those specified in the certification requirements for
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the airplane. During a descending turn immediately after the flaps were retracted, the
ailerons suddenly deflected in the right-wing down direction, the autopilot disconnected,
and the airplane entered an abrupt roll to the right. The flightcrew were unable to correct
this roll before the airplane impacted the ground.

21. 3/31/1994 Bucharest A310-300 Tarom
Shortly after takeoff in poor visibility and heavy snow, with autothrottles engaged, climb
thrust was selected. The right engine throttle jammed and remained at takeoff thrust, while
the left engine throttle slowly reduced to idle. The increasing thrust asymmetry resulted in
an increasing left bank angle, which eventually reached about 170 degrees. The airplane
lost altitude and impacted the ground at an 80-degree angle. Only small rudder and elevator
deflections were made until seconds before impact, when the left throttle was brought back
to idle to remove the thrust asymmetry. Fatal crash.

22. 11/12/1995 Bradley MD-80 American Airlines
On a VOR-DME approach, the airplane descended below the minimum descent altitude,
clipped some tree, and landed short of the runway. Contributing to this incident was a loss
of situation awareness and terrain awareness by the flightcrew, lack of vertical guidance for
the approach, and insufficient communication and coordination by the flightcrew.

23. 12/20/1995 Cali B757-200 American Airlines
Unexpectedly cleared for a direct approach to Cali, the flightcrew apparently lost situation
awareness and crashed into a mountain north of the city. On approach, the flightcrew were
requested to report over Tulua VOR. By the time this waypoint was input into the flight
management computer, the airplane had already flown past it; the autopilot started a turn
back to it. The flightcrew intervened, but the course changes put them on a collision course
with a mountain. Although the ground proximity warning system alerted the flightcrew,
and the flightcrew responded, they neglected to retract the speedbrakes and were unable to
avoid hitting the mountain. Fatal crash.

24. 2/6/1996 Puerto Plata 757-200 Birgenair
After taking off from Puerto Plata, the flightcrew lost control of the airplane during climb
and crashed into the ocean off the coast of the Dominican Republic. Problems with the
captain's airspeed indication were encountered during the takeoff roll, and the takeoff and
initial climb out were conducted using airspeed call outs by the first officer. Continued
erroneous airspeed indications, possibly due to a blocked pitot tube, requited in an
overspeed warning during climb. Shortly thereafter the stickshaker activated. The
conflicting warnings (overspeed and stall) apparently confused the flightcrew. The airplane
entered a stall from which it did not recover. Fatal crash.
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Appendix F: Embry-Riddle Survey of Different Opinions on FMS Increasing or
Decreasing Workload:

Comments increase Comments decrease Others
workload workload
Automation has increased Workload is decrease Work saving, but seductive.
workload. If I haven't flown markedly during flight if the Too much head down in
it in several weeks as well as system is programmed high density areas. (G-IV-
in rusted situations, i.e., properly and accurately in F/O)
changed runway at last the first place. (BE-
moment, or late issuance of 2000/400-Capt.)
a clearance/request. (G-IV-
F/O)
It requires an above normal Workload has greatly It is great equipment and can
amount of heads down time decreased from non- contribute to safer flights. It
especially takeoff/departure automated aircraft when does require considerable
and approach/landings. everything goes as pre- training and peaks of high
ATC contributes to this programmed (DA-20, DA- workload. Crews must
problem with numerous 50 -Capt.) guard against complacency
changes. (CE-650, LR-35- and remain in the loop at all
Capt.) times.

(CL 600, L329-C/P)
Workload is increased They reduce the workload It eliminates some of the
during approach phase with greatly - makes the flights work involved with the old
ATC changes to the arrival much smoother. (G-III,CL- systems, but it also creates
routing or the approach. 601-Capt.) problems of its own, such as
(Bae-125-800, G-llI-Capt.) too much heads down in

critical situations if you
don't have the discipline to
have pilot not flying do the
work. (DA-50/900-Capt.)

Automation has increased The information they Feel great to be flying state
workload on approaches, provide significantly reduces of the art equipment, but
especially when runway pilot workload throughout when inactive, as far as
changes occur. It is not fully all phases of flight, and flying the aircraft, takes
used to its capabilities in enhances cockpit resource longer to get up to speed on
high traffic areas i.e. NYC, management. The real time the FMS and EICAS
Chicago, LAX, etc. (CE- data the FMS provides, such systems than older, more
650, G-IV-Capt.) as fuel flow, position, time, comfortable system. VNAV

distance, wind speed and is unable to be used because
direction, aircraft weights, of ATC constraints (idle
land much more can only descents are unacceptable).
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enhance the safety of flight, (G-IV, DA-200, BE-200-
by reducing the workload on Capt.)
the flight crew. (CL 601-3A,
CE 560 - Capt.)

Increased Workload in Once you become proficient I enjoy it .... but I don't trust
terminal area and last minute it greatly reduces the it. (CE-650-Capt.)
ATC changes. (DS-50, N- workload and makes for a
265, BAe-800-Capt.) much safer operation. (G-

IV/III, MD-80 - Capt.)
Preflight checks and Although preflight workload I have great praise for this
procedures are much more and approach workloads are technology. It gives you a
involved, and have not relatively high - the benefits lot of useful information, but
noticed any real decrease in realized by reduced ultimate it also tends to keep heads
other modes of flight. The workload during takeoff or down more inside the
largest increase is in short landing emergencies is a real cockpit. (Bae 125-800, DA
drop and go situation where benefit. (G-IV - Capt.) 50, N265-Capt.)
FMS needs a re-program.
(G-IV-Capt.)
Increased in some phases - The new equipment is much I am very much in favor of
preflight programming easier to fly and under high the highly automated
versus filling out old card workload keeps you aircraft. The only real
manually because informed of the info you problem in flying them is a
programming requires need in one/two convenient need to fly them fairly often
entering more parameters places. (BE-40/300 - Capt.) maintain currency. I only
than old card. (G-IV, CE- average one flight a month,
550/560-Capt.) and it is difficult to stay

current with all of the FMS
features under those
circumstances. (G-IV, BE-
400A-Capt.)

Obviously workload en the Assuming you get the The automated cockpit is
ground before flight due to requested route you file - great. However, there are
more tests and set-up of your workload is too many gadgets, bells, and
departure information. (CE- significantly reduced from whistles for the human brain
560/550-Capt.) takeoff to landing. to take in. Sometimes trying

Otherwise, you need two to utilize everything means
FMS units, so the first missing an important
officer can program as function somewhere else.
changes occur - then transfer (CE-550-Capt.)
the new information to the
captain and flight guidance
computer. (DA-900-Capt.) I
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It unfortunately seems to Decreased workload in Great-but you must stay
increase the workload when power setting, calculating current and fly frequently to
it is already highest - around descent gradient to make a keep proficient. (CL-601-
the airport during an fix at altitude, VNAV is Capt.)
approach. (DA 900/50 -C/P) great. (G-IV, CE-550/560-

Capt.)
Greatly increased workload Has made enroute It is great step forward, but
on descent, approach, and calculations of ETA and fuel requires proper training and
landing, mostly because the remaining easier. (G-Ill, some experience with the
automation fails, or doesn't Bae-800 - F/0, CE-560- system. (G-IV, BE-400A-
do what you want it to do. Capt.) Capt.)
You then have to figure out
why, then correct error if
possible. (G-IV-Capt.) I I
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Appendix G: FAA Requirements to be an Airline Pilot

(61.153) Airplane rating: Aeronautical knowledge
An applicant for an airline transport pilot certificate must, after meeting the requirements of
61.151 and 61.155, pass a written test on-
(a) The sections of this part relating to airline transport pilots and part 121, subpart C of part
65, and 91.1, 91.3, 91.5, 91.11, 19.13, 91.103, 91.105, 91.189, 91.193, 91.703, and subpart
B of part 91, and so much of part 21 and 25 as relate to the operations of air carrier aircraft.
(b) The fundamentals of air navigation and use of formulas, instruments, and other
navigational aids, both in aircraft and on the ground, that are necessary for navigation
aircraft by instruments.
(c) The general system of weather collection and dissemination.
(d) Weather maps, weather forecasting, and weather sequence abbreviations, symbols, and
nomenclature.
(e) Elementary meteorology, including knowledge of cyclones as associated with fronts.
(f) Cloud forms.
(g) National Weather Service Federal Meteorological Handbook.
(h) Weather conditions.
(i) Air navigation facilities used on airways.
() Weather information and meteorological data reports.
(k) The influence of terrain on meteorological conditions and developments, and their
relation to air carrier flight operations.
(1) Radio communication procedures.
(m) Basic principles of loading and weight distribution and their effect on flight
characteristics.

(61.155) Airplane rating: Aeronautical experience
(a) An application for an airline transport pilot certification must hold a commercial pilot
certificate.
(b)
1. At least 250 hours of flight time as a pilot in command of an airplane. At least 100 hours
of which were cross-country time and 25 hours of which were night flight time.
2. At least 1,500 hours of flight time as a pilot including:
(i) 500 hours of cross-country flight time.
(ii) 100 hours of night time.
(iii) 75 hours of actual or simulated instrument time, at least 50 hours of which were in
actual flight.
(Flight time used to meet the requirements of paragraph (b) 1 may also be used to meet the
(b) 2.
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(61.157) Airplane rating: Aeronautical skill
(a) An applicant for an airline transport pilot certificate must pass a practical test that
includes: (1) Preflight, (2) Takeoffs (3) Instrument Procedures (4) Inflight Maneuvers (5)
Landings and Approaches to Landings (6) Normal and Abnormal Procedures (7)
Emergency Procedures. (The detail see Appendix D)

According to the regulations list above, it is still addressed heavily on the flying skills and
basic aeronautic knowledge. Then it is important for us to further evaluate the training
requirements that an airliner need to do to train their pilots. The FAR listed its
requirements as follow:

Training (135.321)
There are six categories of training need to be defined:
1. Initial training: The training required for crewmembers who have not qualified and
served in the same capacity on an aircraft.
2. Transition training: The training required for crewmembes who have qualified and served
in the same capacity on another aircraft.
3. Upgrade training: The training required for crewmembers who have qualified and served
as second in command on a particular aircraft type, before they serve as pilot in command
on that aircraft.
4. Differences training: The training required for crewmembers who have qualified and
served on a particular type aircraft, when the Administrator finds differences training is
necessary before a crewmember serves in the same capacity on a particular variation of that
aircraft.
5. Recurrent training: The training required for crewmembers to remain adequately trained
and currently proficient for each aircraft, crewmember position, and type of operation in
which the crewmember serves.
6. In flight: The maneuvers, procedures, or functions that must be conducted in the aircraft.

(135.331) Crewmember emergency training (pilot areas)
1. Instruction in emergency assignments and procedures, including coordination among
crewmembers.
2. Individual instruction in the location, function, and operation of emergency equipment.
3. Instruction in the handling of emergency situations.
4. Review of the certificate holder's previous aircraft accidents and incidents involving
actual emergency situations.

(61.151) Eligibility Requirements
(a) Be at least 23 years of age.
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(b) Be of good moral character.
(c) Be able to read, write, and understand the English language and speak it without accent
or impediment of speech that would interfere with two-way radio conversation.
(d) Be a high school graduate.
(e) Have a first-class medical certificate within the 6 months before the date he applies.

Ground Training
(135.345) Pilots: Initial, transition, and upgrade ground training

This training must include at least:
1. The certificate holder's flight locating procedures.
2. Principles and methods for determining weight and balance, and runway limitations for
takeoff and landing.
3. Enough meteorology to ensure a practical knowledge of weather phenomena, including
the principles of frontal systems, icing, fog, thunderstorms, windshear and if appropriate,
high altitude weather situations.
4. Air traffic control systems, procedures, and phraseology.
5. Navigation and the use of navigational aids, including instrument approach procedures.
6. Normal and emergency communication procedures.
7. Visual cues before and during descent below DH or MDA.
8. Other instructions necessary to ensure the pilot's competence.

The Flight Training
(135.347) Pilots: Initial, transition, upgrade, and differences flight training
(a) The training for pilots must include flight and practice in each of the maneuvers and
procedures in the approved training program curriculum.
(b) The maneuvers and procedures required by paragraph (a) of this section must be
performed in flight, except to the extent that certain maneuvers and procedures may be
performed in an aircraft simulator, or an appropriate training device.
(c) If the certificate holder's approved training program includes a course of training using
an aircraft simulator or other training device, each pilot must successfully complete--
(1) Training and practice in the simulator or training device in at least the maneuvers and
procedures in this subpart that are capable of being performed in the aircraft simulator or
training device.
(2) A flight check in the aircraft or a check in the simulator or training device to the level of
proficiency of a pilot in command or second in command, as applicable, in at least the
maneuvers and procedures that are capable of being performed in an aircraft simulator or
training device.
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Appendix H: The Examples of Alternative Basic Training Methods

Lufthansa Airline.
In the mid 1950s, the Lufthansa, West Germany's flag airline, started a so called ab initio
training program. After initial ground school classes in Bremen, students transferred to the
company's contract facility at Goodyear, Arizona (near Phoenix) for 105 hours in single-
engine aircraft and 170 hours of class work. Then students return to Bremen for simulator
training and more ground school, then return to Arizona to continue flight training in twin-
engine aircraft. The ab initio (students self-improvement from the beginning) training totals
250 hours of flight training, plus 210 hours of ground school and simulator training to be
completed before a pilot can be a qualified Lufthansa first officer for domestic B-737s
(Glines: 1990b, 18).

China Airline.
Taiwan's China Airline send its student pilots to University of North Dakota (UND) for

Spectrum and Advanced Spectrum pilot training. The program consists of a 15-month ab
initio Spectrum course. Most of the initial training is in single-engine Piper PA-28R series
aircraft. Twin-engine Piper PA-44 Seminoles are used for multi-engine instruction. The
graduated students have 550 hour flight time with a U.S. commercial license with
instrument and multi-engine ratings. Then they spend two months in Taiwan to get a
commercial license and return to UND for further training. The key point of this training is
to refine the piloting capabilities and enhance decision-making skills. The advanced
Spectrum program consists of three phases. Phase 1 uses King Airs (Beechcraft C90A) for
turbine transition training and requires 100 hours of flight/observer time and 31 hour of
simulator training. Phase 2 requires 160 hours for both flight and crew time as a first
officer in Beech-1900. Great Lakes Aviation Inc. provides scheduled revenue passenger
service for those students. Phase 3 provides recurrence training every 90 days and line-
oriented flight training (Phillips, 1992a:67).

British Aerospace Flying College.
British Aerospace's Flying College offers a 16 month course for possible employment with
British Airlines. Trainees attend the International Airline Training Center (IATC) in
Lakeland, Florida., for the first phase of their flight training (Swissair and Alitalia Airlines
have similar programs, and Taiwan's China Airlines has its airline's ab initio class at the
University of North Dakota) (Glines, 1990b).

Florida Institute of Technology.
The Florida Institute of Technology (FIT) has a collaborative program with United Airlines
to provide possible flight officer positions. After graduation they are then screened at
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United's Denver training facility and if they satisfy requirements, they return to FIT to
become full-time paid flight instructors for one year (Glines,1990b).

Embry-Riddle Aeronautical University.
The famous Embry-Riddle Aeronautical University has a standardized entry-level airline

pilot training program under FAA auspices. Completing such a program would be "post ab
initio" and qualify anyone seeking an airline piloting job. They have six criteria
(Glines,1990b):
1. Candidates would have to meet FAA-developed minimum criteria such as graduation
from an approved flight school, bachelor's degree or equivalent (See FAR part 61.151).
2. Candidates would be selected based on psychological, medical, personality, and other
types of testing.
3. The training would be a mix of simulators, turboprop aircraft, full mission/crew-oriented
training, and emphasis on cockpit resource management.
4. This would be a joint venture with the participation of FAA, major and regional airlines,
flight schools, aircraft and simulator manufacturers.
5. Professional ground school instructors, designated FAA inspectors, and industry-
designated inspectors would staff each training facility.
6. When the program is completed, students are qualified to be hired by regional or major
airlines.

Comair Airline.
Cincinnati-based Comair Airlines has formed the Comair Aviation Academy at Sanford,
Fla. A high school diploma and second class medical ratings plus an instrument rating are
required and training would be at students' own expense. After graduation, an interview
with Comair would possibly provide them the chance to transition into the right seat after
another 16 months' training (Glines,1990b).
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Appendix I : The Examples of Operating Skill-Based FMS Training Philosophies

The United Airlines. That company provides a consistent, mission-oriented approach to
cope with the highly automated aircraft which integrates crew resource management and
measures pilot performance throughout the learning cycle. UA conducts an Advanced
Qualification Program (AQP) ( details in next page). It de-emphasizes the need for in-depth
knowledge of basic aircraft systems operation (William, 1995:50). In their point of view, as
S. William Reichert, United's manager of fleet operations for A320 says : "Pilots are
getting younger and are more computer literate, so we have moved away as much about
how the aircraft works", "We now teaching system operation, more on interfacing with the
aircraft through the FMS, more mission-oriented, not as maneuver-oriented (the term
"mission oriented" came from the common complaints directed at traditional aircrew
training and checking programs that they are maneuver-oriented, frequently including
maneuvers that are not necessary. (Bob: 1990) as we used to be".

The Airbus industry, to fit the transition training needs, the Airbus industry designed a
course to eliminate pilots' concerns about its automation feature. They realized that not
everyone who takes that course are raised on computers and video games. To the older
pilots, computers can be threatening. So, the first part of A320 training was like that for
any other aircraft. After that, they were trained to operate the A320 using specific aircraft
configurations chosen for each flight segment. Finally, they learned the procedures for
abnormal situations and emergencies. Some trainees said "The A320 is not really a difficult
aircraft, but it is a totally different aircraft, and the pilots therefore have to break away from
their previous flying experience" (Jeffrey, 1992:62).

Air Canada. Air Canada's pilots use computer-based instruction consoles which all
have FMS control display so they can practice making entries. Air Canada and TWA have
fixed simulators with FMS installed so pilots can practice loading the computers before
entering the full motion simulator training (David,1992b:52).
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The Advanced Qualification Programs (AQP)

The FAA Special Federal Aviation Regulation 58, signed into law on September 26,
1990. This new rule permits air carriers, following a rigorous instructional system design
process, to develop their own unique pilot qualification programs, independent of
traditional regulations and artificial constraints, but meeting the industry recognized
requirement for operational crew oriented training. It can be described as:

9 mission oriented
* proficiency based
* analytically developed
* empirically validated

To be approved, an AQP program must include:

* Cockpit Resource Management training and evaluation
* Line Operational Simulations (LOS) for both Line Oriented Flight Training (LOFT)

and Line Operational Evaluations (LOE), as defined in Advisory Circular 120-35B
* Specialized training for instructors and evaluators.

(Source from Bob Smith - Implementation of New Technology - A United Airline's
Perspective, published in 1990 by Society of Automotive Engineers, Inc.pp-16)
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Appendix J: Open-Ended Questionnaire and Comments from Pilots for Automation

Open-ended question 1. Briefly describe an operational problem - that you personally

know of - involving the automated features of your aircraft that could have had a

negative safety consequence. How could the error have been avoided?

Table 1. Frequency of categorized responses for open-ended question 1 (n=339)
Response Category Frequency
Heads-Down/Inside Cockpit 47
Data Input Error 38
Altitude Problems "Busts" 25
Design/Interface 22
Training 20
Crew Communication 19
Equipment Failure 17
Check Data Entered 15
Autothrottle Incidents 14
System Software 13
Air Traffic Control 12
System Induced 12

Table 1 shows the most frequent response was the amount of time spent heads-down in

the cockpit. The second most frequent response was the number of data input or

programming errors.

The sample of comments

1. During initial automated operations, individuals spend excessive time in head-down

situation. Become more heads-up as experienced is gained. (BAe 800, SK 76A-Capt.)

2. When systems are new to a crew, too much "heads down" in the cockpit: spend more

time in cockpit using equipment in hangar or on a mock flight. If system malfunction soon

after takeoff, too much "head down" in cockpit: leave it alone until out of FL 180 or later

and then reinitialize or reprogram. (Bae-800, CE-650-Capt.)

3. A new system or a pilot just introduced to highly automated cockpit can have too much
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heads down time, therefore, decreasing safety considerably. (DA-900, DA-50-Capt.)

4. ..... with all of the functions now possible for use during an arrival, I find many pilots

spending too much time in the cockpit pushing buttons when they should be watching for

traffic." (G-IV, BAe-800--Capt.)

5. "During transition into the automated cockpit, there was an inordinate amount of

'heads down' time which left me a bit uncomfortable at first. Once the crew got user

friendly with the systems, this uneasiness vanished." (DA-50, BE-400A--Capt; G-IV-F/O)

6. "Pilots flying new equipment tend to spend too much time inside cockpit playing with
'new gadgets' and not looking for traffic during critical times of flight. Basic observation

during flight training and flight instructing." (CE-550/650-Capt., C/A, Inst.)

Open-Ended Question 2. Were there any instances in which the automated features

"saved the day" or had a positive safety consequence?

Table 2. Frequency of categorized responses for open-ended question 2 (n=248)
Response Category Frequency
Multi Function Display (MFD) 49
Auto Commands (airspeed, altitude, hold) 33
Increases Situational Awareness 26
Reduces Workload 17
Traffic Collision Avoidance System 15
(TCAS)
Improves Safety 14
Simplifies International Flying 14
Heads-up Comments 8
Vertical Navigation (VNAV) 4
Extend Runway Centerline 3

The great majority of responses indicated that the MFD greatly assists normal piloting

duties. Pilots also reported that the MFD provides important information quickly during

critical times, thus allowing for better situational awareness. The second most frequent

response was the convenience of autocommands (e.g., airspeed, altitude, holding). Pilots

appear to be very pleased with these automated features which apparently reduce their

inflight workload, allowing more time for outside scanning. Pilots indicated that these
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capabilities are very helpful, from autohold in heavy weather to autocall of emergency

procedures on the checklist.

Sample of Comments

1. "...map display on the MFD greatly helps you in keeping track visually of your position

in relation to airport and what position you are during instrument approach." (DA-50/900,

CE-650--Capt.)

2. "FMS Nav features are extremely helpful when navigation outside of U.S. Also the

ground track nav. display gives an excellent picture of aircraft position." (G-IIIV--Capt.)

3. Autothrottles continue to 'save the day' and have positive safety consequences. (G-IV,

CE-550/560--Capt.)

4. Autothrottle go around with missed approach programmed in the FMS + heavy weather

and winds 35-40 mph. It was very comforting that the aircraft knew what to do when we

had a hard time just seeing a blurred instrument panel. (G-IV, CL-601--Capt.)

5. The altitude hold at the pre-selected altitude selection is out standing. (G-IV--Capt.)

6. "...and with performance computer and throttle - less monitoring of power and speed

means more for traffic." (G-IV--Capt.)

7. "All of the alert features both aural and /or visual such as altitude, terrain, and program

and capture modes are very positive safety features." (DA-900--C/P)

Open-Ended Question 3. "What operational features should be added to improve
safety and/or reduce workload"

Table 3. Frequency of categorized responses for open-ended question 3 (n=291)

Response Category Frequency
Simplify Software 43
Standardize Keypads and Location 27
Heads-up display 22
Traffic/Collision Avoidance system 16
Training 15
Put controls higher/more forward 14

Better/Expanded Databases 11
Standardization 11

Minimize display clutter 9
Other (AOA, back-to-basic-button) 9
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Aural Warnings 5
Keep Past Waypoints Alive 4
Terrain/Obstacle Information Displayed 4
Airspeed Trend[Thrust Vector 3
Clear View of EFIS 3

Samplify Software (Sample of Comments)

"..make the systems user friendly, easier to learn, use, and understand. Less typing equals

less chance for mistakes. It is easy to get lost with data input and tends to be a more

difficult system to remember. All in all, it is not user friendly." (CE-650-Capt.)

"All automated systems could be made better by constantly improving software to lessen

keystrokes required to effect a specific function i.e., to built a RNAV approach, or

SID/STAR." (BE-2000/400-Capt.)

Standardize Keypads (Sample of Comments)

"..several pilots including myself wish that they would employ a standard typewriter

keyboard format..." (DA-50-Capt.)

"Keyboards have to be well-lighted at night and lebeled with larger letters for the various

functions." (DA-50-Capt)

Open-Ended Question 4B. What effect has automation had on your workload?

Where has it increased workload? Where has it decreased workload?

Table 4B. Frequency of categorized responses for open-ended question 3 (n=129)
Increased Workload responses Frequency
Preflight Planning 56
ATC Changes 19
Descent/Approach 15
Initial Learning 7
Terminal Area 7
Takeoff/Departure 6

Decreased Workload Responses Frequency
Enroute 39
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General Decrease 31
Once Experienced with systems 13
Automatic computations 13
Preflight and Programming 10
Descent/Approach 8
Takeoff/Departure 8
SIDs/STARs/Flight Plans Easily- 4

Table 4 shows the frequency of responses by workload category for open-ended question 4.

The comments for this question were divided into two categories: increased workload and

decreased workload. It appears that the pilots' perceptions of workload are equally divided,

where 110 comments reported some increase in workload, and 126 comments indicated a

workload decrease.

Most comments were relatively consistent: pilots reported that preflight checks,

procedures, and programming the FMS are more involved as compared to the procedures in

non-automated aircraft.

For those reporting a decrease in workload, enroute was the most frequent response. Pilots

indicated that the amount of information available and the ease of accessing that

information has vastly improved.

Sample of Comments

1. "Preflight checks and procedures are much more involved, and have not noticed any real

decrease in other modes of flight. The largest increase is in short drop and go situation

where FMS needs a re-program." (G-IV--Capt.)

2. "My preflight and system programming duties have increased dramatically." (G-IV, CE-

650/560--F/O)

3. "Increases workload on the ground before flight due to more tests and set-up of

departure information." (CE-560/550--Capt.)

4. "Obviously workload has increased in the preflight stages whether we program a flight

plan to computer disk in the office or work n the FMS in the aircraft." (DA-900, CL-601--

F/O)

5. "It unfortunately seems to increase the workload when it is already highest - around the

airport during an approach." (DA 900/50--C/P)

6. "Greatly increased workload during approach and landing, mostly because the
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automation fails, or doesn't do what you want it to do. You then have to figure out why,

then correct error if possible. Computer is slow, and you are trying to fly the approach."

(G-IV--Capt.)

7. "It decreased workload on most flight where most factors are known, such as standard

routings and arrivals as well as predictable passengers requests and schedules." (G-IV--

F/)

8. "Decreased workload in power setting, calculating descent gradient to make a fix at

altitude." (G-IV, CE-550/560--Capt.)

9. "With experience, the workload has gone down to where it is easier to fly than older

aircraft." (G-IV--Capt.)

10. "Initially the workload doubled. But, as we learned the system more thoroughly, and

became more trusting with the system and its accuracy, the workloads have actually

decreased." (CE-650/550--C/P)

11. "Initial learning phase is significantly increased. After about 20-30 hours of hands on

experience workload decreases." (DA-50, CL-601--Capt.; G-IV-F/G)

Open-Ended Questions 4. Briefly describe your initial training for the automated

aircraft you fly. What were the best parts? What were the worst parts?

Table 4. Frequency of categorized responses for open-ended question 4 (n=132)
"Best Part" Responses Frequency
Training Device/Simulator 11

"Worst Part" Response Frequency
No Formal Training 23
Training Materials/Support Inadequate 20
Poor Initial Training 6
Too Much Too Soon 6
Not Enough Flying the Aircraft/Too Much Emphasis on FMS 4
Not Enough Time on the FMS 2

Several pilots critique the quality of their initial training. Because EFIS/FMS systems are

relatively new in corporate aviation, most training organizations (e.g., Flight Safety,

SimuFlite) had limited experience with automated equipment. From the pilots' perspective,

as well as that of the training organizations, it is unfortunate that these aircraft were
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manufactured and delivered before any structured curriculum and/or training support could

be developed. The majority of pilots giving "worst part" responses indicated that they did

not receive any formal training. Most indicated that their training consisted of on-the-job,

learn-as-you-go scenarios. Many others reported that they just read the manual and

received instruction tips in the hangar.

Sample of Comments

1. "BEST-FMS training device. Excellent simulator (Phase II) entire check ride

accomplished in simulator." (CE-650, G-IV--Capt.)

2. "EFIS/FMS simulators best parts." (G-1 159A, CE-650--Capt; CE-560--Capt; BE-30--

F/O)

3. "Simulator training best flight training." (G-IV--Capt.)

4. "I did not really have any initial training other than reading the manual myself and the

chief pilot giving me hands on pointers on a trip." (CL-600/601-3A, G-1 159--Capt.)

5. "My initial training involved myself on the ground with a manual and sitting in a

powered up electronic system. Then I went on a trip and was given instruction on the way.

This is very typical. Some pilots don't even have the desire to sit in the aircraft on the first

trip." (CE-550/650--Capt.)

6. "There was none. We learned on the job and it was difficult. There were many mistakes

and we were lucky not to get violated. Not recommended." (G-II--Capt.)

7. "Although my initial training was for a First Officer position, no training for EFIS/FMS

was available." (CE-650/550--Capt.)

8. "No initial training was received - this is my greatest concern as we keep advancing in

automation. Training institutions and manufactures must get together and offer initial as

well as recurrent training to pilots who will be flying these systems. Technology is moving

very fast; let's be sure we are on the same page." (G-III, CE-605--Capt.)

9. "I received training on our FMS system from other crew members in our flight

department. There was no formal training on our type rating as the system installed varies

with the operator." (BE-200/400--Capt.)

10. "Worst - poor training materials (1989); improper lighting in simulator; improper

emphasis in simulator; infuriating sensitivity of barometer setting procedures; poor design

of some indicators (DME)." (G-IV, CE-650--Capt.)

11. "Poor/brief - trained on older equipment that differed substantially from advanced
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version in our new aircraft. Group of 9 pilots 'self taught' and 'group helped' on training

flights using manual supplied. Like computer applications - the best way to learn is to get

in there and play around - hopefully on the ground." (CL-601--Capt.)

Open-Ended Question 5. Describe any problems that you had in an automated

aircraft during: (a) your initial operating experience, and (b) your subsequent

operating experience.

Table 5. Frequency of categorized responses for open-ended question 5 (n=122)
Initial Operating Experience Frequency
General Confusion 9
Getting Use to EFIS 7
Calling up Correct Page/Display 6
Heads-Down/Inside Cockpit 5
Push Wrong Buttons/Slow Entering Data 5
Too Much Going On 5
Uncertainty in Programming 5
Other 2

The majority of the responses indicate that there is a large learning curve with these

automated systems. It appears that many of the initial experience problems reported are due

to a lack of familiarization with these systems. When pilots acquire enough experience,

these perceived problems seem to disappear or become less severe.

Sample of Comments

1. "No major problems. Just lots of head scratching until everyone learned ins and outs of

system. Everyone tried all the different modes of display etc. and finally settled on the one

they liked." (DA-50, HS 125-800- C/P)

2. "Autothrottle creates considerable confusion on takeoff, initial climbout and on go-

around." (G-IV--Capt.)

3. "Getting used to the EFIS display was the hardest. I can not imaging going back to a
'non-glass' cockpit now, however." (CL-601-3A, P-3C--Capt.)

4. "Main problem was calling up the correct display on the screen for the function that I

wanted to use or modify in a flight plan." (G-Im-Capt.; CL-601-F/O)

5 "Initially it is extremely difficult to figure out exactly how to program or pull up the data
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you want, i.e., how to get the correct page up to program the system." (G-IV-Capt.)

Open-Ended Question 6. What impact, if any, has automation had on your
recurrence training?

Table 6. Frequency of categorized responses for open-ended question 6 (n=129)
Response Category Frequency
Very LittleNirtually None 46
Negative Impact 14
Train in a Simulator Unlike Aircraft Flown 13
Others 12
Increases the Need for Training 6
Positive Impact 6
Emphasized the Need for New Crew Coordination Training 5
Need to Keep up with Software Changes 5
Made it More Difficult 4
Notice Some Degrade in Flying Skills 4

Although several pilots reported that automation has had virtually no impact on their

recurrent training, others indicated that it has a negative impact. The major concern

expressed was that most simulators are not equipped like the aircraft in which pilots fly.

Sample of Comments

1. "I think that some deterioration in effectively may be occurring due to allocating too

much time to FMS/automation at expense of not accomplishing most/all of emergency

procedures on the checklist. This is a mistake. I feel that the main priority of recurrence

training is being missed." (G-IV, CE-650--Capt.)

2. "Today, recurrent ground school and simulator training with Flight Safety dose not

include any work with electronics. This must change." (CE-550--Capt.)
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